Pengembangan Obat Biologi: Bioteknologi, Biosimilar, dan Reverse Engineering

Screenshot (224)

Series



Categories



Published

January 11, 2022

HOW TO CITE

Adi Santoso (ed)

Puslit Bioteknologi LIPI

DOI: https://doi.org/10.55981/brin.341

Keywords:

pengembangan obat biologi, biosimilar, reserve engineering

Synopsis

Obat-obatan merupakan salah satu aspek penting bagi masyarakat dalam pembangunan kesehatan. Namun, tidak semua masyarakat mumpuni untuk mencukupi kebutuhan tersebut karena tidak jarang harga yang dipasarkan tidak terjangkau. Masalah tersebut akan dapat dipecahkan apabila obat yang dibutuhkan tersedia dengan harga yang terjangkau oleh mereka yang membutuhkannya. Bioteknologi, Biosimilar, dan Reverse Engineering ini akan membahas cara-cara untuk mengembangkan obat biologi baru melalui biosimilar. Biosimilar merupakan salah satu cara pengembangan obat biologi dengan menggunakan aplikasi teknologi berbasis reverse engineering pada bioteknologi kesehatan. Buku ini merupakan kompilasi dari kegiatan yang telah dilakukan dengan riset mendalam dan dilengkapi dengan informasi-informasi penting. Lebih lanjut, buku ini juga menghadirkan refleksi terhadap kemajuan, peluang, dan tantangan biosimilar di masa yang akan datang. Tentunya, buku ini sangat cocok dibaca bagi para pemerhati industri obat dan pemangku kepentingan dibidang kesehatan

Chapters

Bioteknologi dan Biosimilar: Perkembangan Obat Berbasis Terapeutik Protein

Adi Santoso

Regulasi Obat Biosimilar

Eko Wahyu Putro , Gita Syahputra

Eritropoietin dan Obat Biosimilar: Sejarah Kesuksesan Terapi Anemia dan Tantangannya

Adi Santoso, Yana Rubiyana, Arizah Kusumawati, Popi Hadi Wisnuwardhani, Endah Puji Septisetyani

Strategi Produksi Human Insulin Menggunakan Khamir Metilotropik Pichia pastoris

Dini Nurdiani, Neng Herawati, WIEN KUSHARYOTO

Interferon Alfa-2a: Terapeutik Protein Untuk Penanganan Hepatitis dan Kanker

Ratih Asmana Ningrum, Apon Zaenal Mustopa, Andri Wardiana

Tiga Dekade Human G-CSF dalam Dunia Medis: Perkembangan dan Manfaat

Asrul Muhammad Fuad

Strategi Peningkatan Aktivitas Terapeutik Protein Melalui Modifikasi Protein

Kartika Sari Dewi, Dian Fitria Agustiyanti

Formulasi Terapeutik Protein Rekombinan

Riyona Desvy Pratiwi, Hariyatun, Ratih Asmana Ningrum

Bioproses Produk Obat Biosimilar

Andri Wardiana, Ratih Asmana Ningrum, Eko Wahyu Putro

Refleksi Terhadap Kemajuan, Peluang dan Tantangan Biosimilar ke depan

Adi Santoso, Puspita Lisdiyanti

Author Biographies

Adi Santoso, Puslit Bioteknologi LIPI

Lahir di Jember, Jawa Timur, pada 17 Desember 1960. Ia menempuh pendidikan S1 di Fakultas Peternakan Universitas Brawijaya, Malang. Lulus dari Universitas Brawijaya pada tahun 1985, ia lalu diterima di LIPI pada 1986. Pada awal 1988, dengan menggunakan dana Overseas Fellowship Program (OFP), ia melanjutkan studi S2 ke Amerika Serikat dan belajar di North Dakota State University (NDSU), Fargo, North Dakota, pada bidang studi Animal Sciences. Setelah lulus S2, ia melanjutkan studi di Department of Biochemistry and Molecular Biology pada bidang studi Cellular and Molecular Biology di NDSU dengan disertasi tentang enzime ornithine decarboxylase pada Musca domestica. Ia kembali ke LIPI Puslit Bioteknologi pada 2003 dan saat ini minat risetnya terfokus pada glikosilasi dan biosimilar, terutama pada glikoprotein erythropoietin. E-mail: adi.santoso1960@gmail.com

Eko Wahyu Putro

Lahir di Pati pada 27 Mei 1981. Ia lulus Sarjana (S1) di Jurusan Teknik Kimia, Universitas Diponegoro, Semarang, tahun 2003. Ia lulus Magister (S2) di Jurusan Teknik Kimia, The University of New South Wales, Australia tahun 2013, mendapatkan beasiswa dari AusAID tahun 2012–2013. Saat ini, ia bekerja sebagai Peneliti Ahli Muda di Pusat Penelitian Bioteknologi LIPI dengan kepakaran Bioteknologi Kesehatan. E-mail: eko.wahyuputro@gmail.com

Adi Santoso

Lahir di Jember, Jawa Timur, pada 17 Desember 1960. Ia menempuh pendidikan S1 di Fakultas Peternakan Universitas Brawijaya, Malang. Lulus dari Universitas Brawijaya pada tahun 1985, ia lalu diterima di LIPI pada 1986. Pada awal 1988, dengan menggunakan dana Overseas Fellowship Program (OFP), ia melanjutkan studi S2 ke Amerika Serikat dan belajar di North Dakota State University (NDSU), Fargo, North Dakota, pada bidang studi Animal Sciences. Setelah lulus S2, ia melanjutkan studi di Department of Biochemistry and Molecular Biology pada bidang studi Cellular and Molecular Biology di NDSU dengan disertasi tentang enzime ornithine decarboxylase pada Musca domestica. Ia kembali ke LIPI Puslit Bioteknologi pada 2003 dan saat ini minat risetnya terfokus pada glikosilasi dan biosimilar, terutama pada glikoprotein erythropoietin. E-mail: adi.santoso1960@gmail.com

Dini Nurdiani

Lahir di Kuningan pada tanggal 17 Juli 1974. Ia lulus S1 program studi Biologi dari Institut Pertanian Bogor (IPB) pada 1997 dan menjadi staf pengajar di Universitas Kuningan pada 2000–2007. Pada 2006, ia lulus S2 Program Studi Biologi, Sub-Program Mikrobiologi IPB dengan beasiswa Program Pascasarjana (BPPS) dari Direktorat Jenderal Pendidikan Tinggi (Dikti). Pada 2007, ia bergabung dengan Pusat Penelitian Bioteknologi LIPI, kemudian melanjutkan studi S3 dengan beasiswa Global Center of Excellence (global COE) for Practical Chemical Wisdom (2009–2012) di Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Jepang, dengan bidang keahlian rekayasa biologi molekuler, dan lulus pada 2015. Saat ini, ia tergabung dalam Kelompok Penelitian Produk Biologi di Pusat Penelitian Bioteknologi LIPI. E-mail: dini011@lipi.go.id.

Ratih Asmana Ningrum, Pusat Penelitian Bioteknologi LIPI

Lahir di Bandung pada 18 Juni 1979. Ia lulus Diploma III (D-3) di bidang Kimia Analisis Universitas Padjadjaran Bandung tahun 2000 dan Sarjana (S1) di bidang Kimia, Universitas Ahmad Yani, Bandung, tahun 2004. Ia melanjutkan magister (S2) dan doktor (S3) di bidang Bioteknologi Farmasi, Institut Teknologi Bandung (ITB), masing-masing pada tahun 2008 dan 2012, dengan beasiswa dari ITB. Saat ini, ia bekerja sebagai Peneliti Ahli Madya dan Ketua Kelompok Penelitian Pengembangan Produk Biologi di Pusat Penelitian Bioteknologi LIPI dengan kepakaran Bioteknologi Kesehatan. Selain itu, ia bertugas sebagai Kepala Fasilitas Biosafety Level-3 LIPI pada tahun 2018-2020 dan Ketua Komite Biorisiko Institusional di LIPI sejak tahun 2021.. Ia mendapatkan penghargaan The UNESCO-Loreal for Women in Sciences pada tahun 2013 untuk kategori Life Science. E-mail: rati004@lipi.go.id/ ratih.asmana@gmail.com

Asrul Muhammad Fuad, Pusat Penelitian Bioteknologi LIPI

Lahir di Jakarta pada 26 Juli 1967. Ia mendapat beasiswa Overseas Fellowship Program (OFP) pada 1987 dan memperoleh Diplome d’Etude de Technologie de Compiegne pada 1991 dari Universite de Technologie de Compiegne, di Kota Compiegne, Prancis. Ia mendapatkan gelar Sarjana Kimia pada 1996 di Universitas Pakuan, Bogor. Kemudian, ia melanjutkan pendidikan Pascasarjana di School of Biotechnology and Bioengineering di University of New South Wales, Australia, dan Fakultas Pascasarjana di Institut Teknologi Bandung pada 1998–2000 dan mendapat gelar Magister of Science dalam bidang Bioteknologi (Dual Diplome) dengan beasiswa dari Kementerian Riset dan Teknologi RI. Pada 2004, ia melanjutkan pendidikan doktorat (S3) di Sekolah Farmasi, Institut Teknologi Bandung, dan memperoleh gelar Doktor dalam bidang Bioteknologi Farmasi pada 2009 dengan beasiswa dari Lembaga Ilmu Pengetahuan Indonesia.

Kartika Sari Dewi, Pusat Penelitian Bioteknologi LIPI

Lahir di Bandung pada 22 Januari 1989. Ia lulus Sarjana (S1) di bidang Kimia Organik, Universitas Padjadjaran pada 2010. Ia mulai bekerja di Pusat Penelitian Bioteknologi LIPI pada 2011 dan mendapatkan beasiswa Karyasiswa Ristek pada 2012–2014 untuk melanjutkan pendidikan Magister (S2) pada program studi Bioteknologi Farmasi, Institut Teknologi Bandung. Saat ini, ia tergabung pada Kelompok Penelitian Pengembangan Produk Biologi sebagai Peneliti Ahli Muda dengan bidang kepakaran Bioteknologi Kesehatan. Ia juga bekerja akrab dengan desain gen sintetik, kloning, dan ekspresi protein rekombinan yang diproduksi secara heterolog. E-mail: kart008@lipi.go.id; kasadewi@gmail.com.

Riyona Desvy Pratiwi, Pusat Penelitian Bioteknologi LIPI

arjana (S1) di bidang Farmasi Sains dan Industri, Universitas Gadjah Mada, Yogyakarta, tahun 2008, kemudian melanjutkan Pendidikan Profesi Apoteker Konsentrasi Industri, lulus pada 2009. Ia pernah bekerja sebagai Formulator di Departemen Pengembangan Produk PT. Novell Pharmaceutical Labs, Bogor. Ia lulus magister (S2) di bidang Inovasi Obat pada 2016, dengan topik penelitian high throughput/high consent screening untuk senyawa antikanker di Department of Cell Biology, Universiteit Medical Utrecht, dan nanoformulasi protein di Department of Pharmaceutics, Utrecht Institute of Pharmaceutics Sciences, Universiteit Utrecht. Ia mendapatkan beasiswa dari Lembaga Pengelola Dana Pendidikan (LPDP), Kementerian Keuangan Republik Indonesia. Saat ini ia bekerja sebagai Peneliti Ahli Muda di Pusat Penelitian Bioteknologi LIPI dengan kepakaran Bioteknologi Kesehatan. E-mail: riyo003@lipi.go.id.

Andri Wardiana, Pusat Penelitian Bioteknologi LIPI

Lahir di Bandung pada 15 Oktober 1983. Ia menyelesaikan Pendidikan D3 Analis Kimia di Universitas Padjadjaran Bandung (2001–2004). Pada 2006, ia bergabung dengan Pusat Penelitian Bioteknologi LIPI. Jenjang pendidikan Sarjana Kimia ia ditempuh di Institut Pertanian Bogor (2007–2010), lalu mendapatkan beasiswa dari Australia Award untuk menyelesaikan program Master di bidang Bioteknologi di the University of Queensland, Australia (2013–2014). Pada 2015, ia mendapatkan beasiswa LPDP untuk program Doktor dengan topik rekayasa antibodi di Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Australia (2016–2020). Saat ini, ia tergabung dalam Kelompok Penelitian Produk Biologi di Pusat Penelitian Bioteknologi LIPI. E-mail: andr011@lipi.go.id

Yana Rubiyana, Pusat Penelitian Bioteknologi

Lahir di Bogor, Jawa Barat, pada 21 Februari 1984. Ia lulus pendidikan Diploma III jurusan Analis Kimia, di Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA), Institut Pertanian Bogor (IPB) pada 2002, lalu pada 2009 ia melanjutkan pendidikan Sarjana (S1) melalui Program Alih Jenjang di Departemen Kimia FMIPA IPB. Pada pertengahan 2017, ia mendapatkan beasiswa SDM-IPTEK (Saintek) Kementerian Riset, Teknologi, dan Pendidikan Tinggi untuk melanjutkan studi S2 pada Program Studi Bioteknologi IPB. Sejak tahun 2008 sampai saat ini ia bekerja sebagai Perekayasa Ahli Pertama di Pusat Penelitian Bioteknologi LIPI dengan kepakaran Bioteknologi dan Biologi Molekuler. E-mail: yana.rubiyana@biotenologi.lipi.go.id.

Gita Syahputra, usat Penelitian Bioteknologi LIPI

Ia adalah Peneliti di Pusat Penelitian Bioteknologi LIPI sejak 2015 hingga sekarang dengan kepakaran Bioteknologi Kesehatan dengan fokus pada bi­dang Biokimia dan Aplikasi Bioinformatika. Ia lulus Sarjana (S1) di bidang Kimia, Universitas Diponegoro, Semarang, tahun 2012. Ia melanjutkan studi Magister (S2) bidang Biokimia di Institut Pertanian Bogor (IPB) dan lulus tahun 2014. Saat ini, ia tengah melakukan penelitian mengenai penemuan dan pengembangan obat dari bahan alam serta melakukan penelitian dalam permodelan protein, penambatan molekuler, dan dinamika molekul obat. Beberapa jurnal yang dihasilkan bisa diakses pada https://www.researchgate.net/profile/Gita_Syahputra2 serta https://scholar.google.com/citations?user=aif-rbYAAAAJ&hl=en.

Arizah Kusumawati, Pusat Penelitian Bioteknologi LIPI

Lahir di Boyolali pada 11 Oktober 1984. Ia lulus Sarjana (S1) Kedokteran Hewan Universitas Gadjah Mada (UGM) tahun 2006 dan melanjutkan studi Profesi Dokter Hewan di Fakultas Kedokteran Hewan UGM, lulus tahun 2007. Ia kemudian meneruskan studi Magister (S2) Farmasi bidang Biologi Farmasi, Universitas Indonesia (UI), lulus tahun 2013, mendapatkan beasiswa dari Kementerian Riset dan Teknologi (KEMENRISTEK). Saat ini ia sedang melanjutkan studi Doktor (S3) Kesehatan Masyarakat Veteriner di Fakultas Kedokteran Hewan, Institut Pertanian Bogor (IPB), mendapatkan beasiswa program byResearch dari Lembaga Ilmu Pengetahuan Indonesia (LIPI). Saat ini ia pun bekerja sebagai Peneliti Ahli Muda di Pusat Penelitian Bioteknologi LIPI dengan kepakaran Bioteknologi Kesehatan. E-mail: arizahku@gmail.com

Popi Hadi Wisnuwardhani, Pusat Penelitian Bioteknologi LIPI

Kelahiran Bogor 19 Oktober 1981. Ia bekerja di Pusat Penelitian Bioteknologi LIPI sejak tahun 2011. Pendidikan terakhir pada Magister (S2) Program Studi Biologi, Universitas Jenderal Soedirman, Purwokerto. Ia bekerja sebagai Peneliti Ahli Muda dengan kepakaran Bioteknologi Kesehatan di Laboratorium Protein Terapeutik dan Vaksin. Penelitian yang dilakukan selama bekerja adalah ekspresi dan purifikasi protein rekombinan serta kultur sel mamalia. Selain itu, ia bergabung sebagai pengelola fasilitas Laboratorium Biosafety Level-3 LIPI sejak tahun 2018. Pada 2019, ia mengikuti kegiatan penelitian pengembangan produk biologi, dan pada awal 2020 ia aktif sebagai BioSafety Officer pada kegiatan deteksi virus SARS-CoV-2 COVID-19 sampai sekarang. E-mail: popi002@lipi.go.id.

Endah Puji Septisetyani, Pusat Penelitian Bioteknologi LIPI

Lahir di Rembang, Jawa Tengah, pada 27 September 1984. Dibesarkan dalam keluarga guru yang sederhana, ia mendapatkan beasiswa dari Yayasan Syifa Budi (Bapak Maulwi Saelan) untuk bersekolah di SMU Al-Azhar Boarding School, Lippo Cikarang, Bekasi (1999–2001). Ia menyelesaikan studi S1–S2 di Fakultas Farmasi, Universitas Gadjah Mada (UGM) (2001–2005; 2007–2009) dan bergabung dengan Cancer Research Group bimbingan Prof. Dr. Edy Meiyanto. Pada saat menempuh S2, ia mendapatkan on-place scholarship dari ASEA-Uninet, Austria. Pada tahun kedua studi, ia menjalani Program Research Student (JASSO scholarship) di Laboratory of Gene Function in Animal, Nara Institute of Science and Technology (NAIST), Jepang, di bawah bimbingan Prof. Masashi Kawaichi (2008–2009). Ia mulai bekerja di Pusat Penelitian Bioteknologi LIPI pada 2009, di Laboratorium Protein Terapetik dan Vaksin bimbingan Dr. Adi Santoso, dan memulai pekerjaan kultur sel mamalia untuk ekspresi protein rekombinan erythropoietin. Ia melanjutkan studi S3 di NAIST, Jepang dengan beasiswa dari Ministry of Education, Culture, Sports, Science and Technology, Pemerintah Jepang dan bergabung di Laboratory of Molecular Signal Transduction di bawah bimbingan Prof. Hiroshi Itoh (2014–2018). Saat ini, ia kembali bergabung dengan tim peneliti biosimilar erythropoietin. Selain itu, ia ingin menginisiasi pengembangan antibodi monoklonal serta penelitian-penelitian berbasis target molekuler (molecular targeted therapeutics). E-mail: enda053@lipi.go.id

Neng Herawati, Pusat Penelitian Bioteknologi LIPI

Lahir di Pekanbaru pada 6 Agustus 1978. Sarjana S1 diselesaikannya pada 2003 di Fakultas FMIPA jurusan kimia Universitas Riau (UNRI). Ia lulus Magister (S2) di bidang Bioteknologi, Institut Pertanian Bogor, tahun 2013, dan mendapatkan beasiswa dari Kemenristek Republik Indonesia tahun 2010–2013. Saat ini, ia be­kerja sebagai Peneliti Ahli Muda di Pusat Penelitian Bioteknologi LIPI dengan kepakaran Bioteknologi Kesehatan. E-mail: neng07@gmail.com

WIEN KUSHARYOTO, Pusat Penelitian Bioteknologi LIPI

Lahir di Yogyakarta pada 7 Januari 1967. Ia menye­lesaikan Pendidikan Kimia dengan fokus pada bidang Biokimia dan Bioteknologi serta mendapatkan gelar Diplom-Chemiker dari Technische Universität Braunschweig, Jerman pada 1994 dengan beasiswa Overseas Fellowship Program (OFP) tahun 1987–1994 dari Pemerintah Indonesia. Ia lulus program Doktor (S3) di bidang Biokimia dan Bioteknologi dari Universität Stuttgart tahun 2001 dengan beasiswa dari Pemerintah Jerman melalui DAAD tahun 1997–2001. Saat ini bekerja sebagai Peneliti Ahli Madya di Pusat Penelitian Bioteknologi LIPI dengan bidang kepakaran Bioteknologi (Rekayasa Genetika dan Protein). E-mail: wien.kyoto@gmail.com

Apon Zaenal Mustopa, Pusat Penelitian Bioteknologi LIPI

Lahir di Kuningan pada 12 April 1977. Ia lulus Sarjana (S1) di bidang peternakan, Universitas Padjadjaran (UNPAD), tahun 2001. Ia melanjutkan studi Magister (S2) bidang Bioteknologi, Institut Pertanian Bogor (IPB), lulus tahun 2004. Ia juga mendapatkan beasiswa dari Dankook University, Korea, dan lulus Doktor (S3) bidang Bioresources Science tahun 2013. Saat ini, ia bekerja sebagai Peneliti Ahli Madya di Pusat Penelitian Bioteknologi LIPI dengan kepakaran Bioteknologi Kesehatan. E-mail: azmustopa@yahoo.com

Dian Fitria Agustiyanti, Pusat Penelitian Bioteknologi LIPI

erempuan kelahiran Kota Bandung pada 7 Agustus 1980 ini memulai karir di LIPI pada 2005. Pendidikan terakhirnya adalah magister (S2) farmasi Institut Teknologi Bandung, jurusan bioteknologi farmasi. Ia bergabung dengan Laboratorium Rekayasa Protein dan Pengembangan Sistem Pengantaran Obat Pada Pusat Penelitian Bioteknologi LIPI. Ia bekerja akrab dengan ekspresi dan purifikasi protein rekombinan, sebagai peneliti ahli muda dengan bidang kepakaran bioteknologi kesehatan. Mulai tahun 2019, ia mengelola fasilitas Laboratorium Biosafety level 3 (BSL-3) LIPI, dan Kelompok Penelitian Pengembangan Produk Biologi. Di era pandemic COVID 19, ia ikut bekerja sama dan berperan aktif dalam tim deteksi virus SARS-CoV-2 di Laboratorium BSL 3 LIPI. E-mail: dian.fitria07@gmail.com; dian010@lipi.go.id

Hariyatun, Pusat Penelitian Bioteknologi LIPI

Lahir di Klaten pada 30 Agustus 1982. Ia lulus Sarjana (S1) di bidang Kimia Fisika, Universitas Gadjah Mada, Yogyakarta, tahun 2005, mendapatkan Beasiswa Bank Indonesia (BI). Lulus Magister (S2) di bidang Bioteknologi Kesehatan, Institut Pertanian Bogor, tahun 2014, mendapatkan Beasiswa Pascasarjana dari Kementerian Riset dan Teknologi Republik Indonesia dan Beasiswa Tesis dari Lembaga Pengelola Dana Pendidikan (LPDP), Kementerian Keuangan Republik Indonesia. Saat ini ia bekerja sebagai Peneliti Ahli Muda di Pusat Penelitian Bioteknologi LIPI dengan kepakaran Bioteknologi Kesehatan pada Laboratorium Rekayasa Genetika Terapan dan Desain Protein dan Kelompok Penelitian Pengembangan Produk Biologi Kesehatan, serta bergabung dalam Tim Deteksi Virus SARS-CoV-2 di Laboratorium Biosafety Level-3 (BSL-3) LIPI. E-mail: hari023@lipi.go.id

Puspita Lisdiyanti, Pusat Penelitian Bioteknologi LIPI

Lahir di Yogyakarta pada 14 Agustus 1967. Ia lulus Sarjana (S1) di bidang Biologi Molekular, Tokyo University of Agriculture and Technology, Jepang, tahun 1992 dengan beasiswa Overseas Fellowship Program (OFP) tahun 1987–1992 dari Pemerintah Indonesia. Kemudian, ia lulus Magister (S2) di bidang Mikrobiologi, Tokyo University of Agriculture, Jepang, tahun 1999 dengan beasiswa dari Indonesia Petroleum (INPEX) Foundation tahun 1996–1999. Selan­jutnya ia melanjutkan studi Doktor (S3) di bidang Mikrobiologi dari Tokyo University of Agriculture, Jepang, tahun 2001 dengan beasiswa dari Pemerintah Jepang (Monbukagakusho) tahun 1999–2001. Ia pun tercatat sebagai penerima penghargaan Habibie Prize tahun 2020. Saat ini, ia bekerja sebagai Peneliti Ahli Utama di Pusat Penelitian Bioteknologi LIPI dengan kepakaran Mikrobiologi dan Bioteknologi. E-mail: puspita.lisdiyanti@bioteknologi.lipi.go.id

References

Alberts, B. (2002). Molecular biology of the cell (4th ed.). Garland Science.

Amgen Biosimilars [@AmgenBiosim]. (2016, April 16). Biologics are often 100–1000 times the size of a chemical drug [Tweet]. https://twitter.com/AmgenBiosim/status/721133712616923137/photo/1

Anour, R. (2014). Biosimilars versus ‘biobetters’- a regulator’s perspective. Generics and Biosimilars Initiative Journal, 3(4),166–167. https://doi.org10.5639/gabij.2014.0304.039

Biosimilar Congress. (2017). 8th Asian biologics and biosimilars congress. August 10-12, 2017 Beijing, China. https://biosimilars-biologics.pharmaceuticalconferences.com/asiapacific/2017/

BPOM. (2015). Pedoman penilaian produk biosimilar. https://jdih.pom.go.id/product/search/all/all/biosimilar

Bui, L. A., Hurst, S., Finch, G. L., Ingram, B., Jacobs, I. A., Kirchhoff, C. F., Ng, C. K., & Ryan, A. M. (2015). Key considerations in the preclinical development of biosimilars. Drug discovery today, 20 Suppl 1, 3–15. https://doi.org/10.1016/j.drudis.2015.03.011

Calo-Fernández, B., & Martínez-Hurtado, J. L. (2012). Biosimilars: Company strategies to capture value from the biologics market. Pharmaceuticals (Basel, Switzerland), 5(12), 1393–1408. https://doi.org/10.3390/ph5121393

Camacho, L. H., Frost, C. P., Abella, E., Morrow, P. K., & Whittaker, S. (2014). Biosimilars 101: Considerations for U.S. oncologists in clinical practice. Cancer medicine, 3(4), 889–899. https://doi.org/10.1002/cam4.258

CBD. (2014). The convention on biological diversity and the Nagoya Protocol: Intellectual property implications. A handbook on the interface between global access and benefit sharing rules and intellectual property.

Daubenfeld, T., Dassow, J., Keßler, M., & Schulze, J. (2016). Practitioner’s section understanding the market dynamics of biosimilars. Journal of Business Chemistry, 13(1), 33–46.

Dorey, E. (2014). How the biologics landscape is evolving. The Pharmaceutical Journal, 6(9).

Gorham, H. (2016). The value of biobetters. PRA Health Sciences. https://prahs.com/insights/the-value-of-biobetters

Hacker, D. L., De Jesus, M., & Wurm, F. M. (2009). 25 years of recombinant proteins from reactor-grown cells — Where do we go from here? Biotechnology Advances, 27(6), 1023–1027. https://doi.org/10.1016/j.biotechadv.2009.05.008

Isaacs, J., Gonçalves, J., Strohal, R., Castañeda-Hernández, G., Azevedo, V., Dörner, T., & McInnes, I. (2017). The biosimilar approval process: How different is it? Considerations in Medicine, 1(1), 3–6. https://doi.org/10.1136/conmed-2017-100003

Jayapal, K. P., Wlaschin, K. F., Hu, W. S., & Yap, M. G. (2007). Recombinant protein therapeutics from CHO cells-20 years and counting. Chemical Engineering Progress, 103, 40–47.

Kalantar-Zadeh, K. (2017). History of erythropoiesis-stimulating agents, the development of biosimilars, and the future of anemia treatment in nephrology. American Journal of Nephrology, 45(3), 235–247. https://doi.org/10.1159/000455387

Lybecker, K.M. (2017). The biologics revolution in the production of drugs. Fraser Institute. https://www.fraserinstitute.org/sites/default/files/biologics-revolution-in-the-production-of-drugs.pdf

de Mora, F. (2015). Biosimilar: What it is not. British Journal of Clinical Pharmacology, 80(5), 949–956. https://doi.org/10.1111/bcp.12656

Omasa, T., Onitsuka, M., & Kim, W. D. (2010). Cell engineering and cultivation of chinese hamster ovary (CHO) cells. Current pharmaceutical biotechnology, 11(3), 233–240. https://doi.org/10.2174/138920110791111960

Samanen, J. (2013). How do SMDs differ from biomolecular drugs? Dalam Ganellin C. R., Jefferis R, & Roberts S. M (eds.), Introduction to biological and small molecule drug research and development: Theory and case studies (Kindle ed.) (hlm. 161–203). Academic Press.

Santoso, A., Fuad, A.M., Ningrum, R. A., Wijaya, S. K., Herawati, N., & Wardiana, A. (2007). Expression of human erythropoietin in barley stripe mosaic virus (BSMV). Proceeding of international seminar on pharmaceutics: Update on pharmaceutical innovation and new drug delivery system (hlm. 148–152).

Schellekens H. (2009). Biosimilar therapeutics-what do we need to consider?. NDT plus, 2(Suppl_1), i27–i36. https://doi.org/10.1093/ndtplus/sfn177

Undela, K. (2011). Biogenerics or biosimilars: An overview of the current situation in India. International Journal of Medical and Pharmaceutical Sciences, 1, 1–10.

UN. (1992) Convention on biological diversity. United Nations. https://www.cbd.int/ University of Waikato (2011, Juni 28). DNA, chromosomes and cells. https://www.sciencelearn.org.nz/images/198-cell-chromosomes-and-dna.

USDA. (2016). What are ‘biologics’ questions and answers. http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CBER/ucm133077.html

US Department of Health and Human Services. (2015). Scientific considerations in demonstrating biosimilarity to a reference product: Guidance for industry. https://www. fda. gov/downloads/ drugs/ guidances/ucm291128. pdf

Ventola C. L. (2013). Biosimilars part 1: Proposed regulatory criteria for FDA approval. P & T : A Peer-Reviewed Journal for Formulary Management, 38(5), 270–287.

Vulto, A. G., & Jaquez, O. A. (2017). The process defines the product: What really matters in biosimilar design and production?. Rheumatology (Oxford, England), 56(suppl_4), iv14–iv29. https://doi.org/10.1093/rheumatology/kex278

Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738. https://doi.org/10.1038/171737a0

Abas, A. (2011). Regulatory guidelines for biosimilars in Malaysia. Biologicals, 39(5), 339–342. .

Acha, V., & Mestre-Ferrandiz, J. (2017). Translating European regulatory approval into healthcare uptake for biosimilars: the second translational gap. Technology Analysis & Strategic Management, 29(3), 263–275.

AL-Sabbagh, A., Olech, E., McClellan, J. E., & Kirchhoff, C. F. (2016). Development of biosimilars. Seminars in Arthritis and Rheumatism, 45, S11–S18.

Azevedo, V. F., Sandorff, E., Siemak, B., & Halbert, R. J. (2012). Potential Regulatory and Commercial Environment for Biosimilars in Latin America. Value in Health Regional Issues, 1(2), 228–234.

Bendall, L. J., & Bradstock, K. F. (2014). G-CSF: From granulopoietic stimulant to bone marrow stem cell mobilizing agent. Cytokine & Growth Factor Reviews, 25(4), 355–367.

Blandizzi, C., Galeazzi, M., & Valesini, G. (2018). Transitioning from first-to second-generation biosimilars: an appraisal of regulatory and post-marketing challenges. Pharmacological Research, 128, 306–314.

Boren, J., Congiatu, C., & Hurley, P. (2015). Challenges in global biosimilar development: a regulatory perspective. Contract Pharma.

BPOM. (2015). Pedoman penilaian produk biosimilar.

Casey, D. (2016). Key strategic factors for stakeholders in the current global biosimilar market. Drug Discovery Today, 21(2), 208–211.

CHMP-EMA. (2005). Guideline on similar biological medicinal product.

CHMP-EMA. (2006a). Biosimilar medicinal products containing recombinant granulocyte-colony stimulating factor (Annex to guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues).

CHMP-EMA. (2006b). Guideline on similar medicinal products containing somatropin.

CHMP-EMA. (2010a). Guideline on non-clinical and clinical development of similar biological medicinal products containing recombinant erythropoietins (Revision) Guideline on non-clinical and clinical development of similar biological medicinal products containing recombinant.

CHMP-EMA. (2010b). Similar biological medicinal products containing recombinant erythropoietins.

CHMP-EMA. (2011). ICH S6 (R1) – Preclinical safety evaluation of biotechnology-derived pharmaceuticals. https://www.ema.europa.eu/en/ich-s6-r1-preclinical-safety-evaluation-biotechnology-derived-pharmaceuticals.https://www.ema.europa.eu/en/ich-s6-r1-preclinical-safety-evaluation-biotechnology-derived-pharmaceuticals.

CHMP-EMA. (2012a). Questions and answers on biosimilar medicines (similar biological medicinal products).

CHMP-EMA. (2012b). Similar biological medicinal products containing monoclonal antibodies: Non-clinical and clinical issues.

CHMP-EMA. (2013a). Guideline on non-clinical and clinical development of similar biological medicinal products containing recombinant human follicle stimulating hormone (r-hFSH).

CHMP-EMA. (2013b). Guideline on similar biological medicinal products containing interferon beta Guideline on similar biological medicinal products containing interferon beta Table of contents.

CHMP-EMA. (2013c). Similar biological medicinal products containing interferon beta.

CHMP-EMA. (2014a). Guideline on similar biological medicinal products.

CHMP-EMA. (2014b, 22 Mei). Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues (revision 1) Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substan (1–9).

CHMP-EMA. (2015a, 23 Juli). Concept paper on the revision of the guideline on non- clinical and clinical development of similar biological medicinal products containing recombinant granulocyte- colony stimulating factor (1–3).

CHMP-EMA. (2015b). Guideline on non-clinical and clinical development of similar biological medicinal products containing recombinant human insulin and insulin analogues.

CHMP-EMA. (2015c). Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: Non-clinical and clinical issues. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-similar-biological-medicinal-products-containing-biotechnology-derived-proteins-active_en-2.pdf

CHMP-EMA. (2015e). Non-clinical and clinical development of similar biological medicinal products containing recombinant human insulin and insulin analogue.

CHMP-EMA. (2017). Non-clinical and clinical development of similar biological medicinal products containing low-molecular-weight heparins.

Daller, J. (2016). Biosimilars: A consideration of the regulations in the United States and European union. Regulatory Toxicology and Pharmacology, 76, 199–208.

Declerck, P., Danesi, R., Petersel, D., & Jacobs, I. (2017). The language of biosimilars: Clarification, definitions, and regulatory aspects. Drugs, 77, 671–677.

GaBI. (2012). US$67 billion worth of biosimilar patents expiring before 2020.

GaBI. (2013). Egypt issues draft guidelines for biosimilars.

GaBI. (2014). Comparison of biosimilars guidelines.

GaBI. (2015). Angular stylized world map.

Grampp, G., McElroy, P. L., Camblin, G., & Pollock, A. (2018). Structure-function relationships for recombinant erythropoietins: a case study from a proposed manufacturing change with implications for erythropoietin biosimilar study designs. Journal of Pharmaceutical Sciences.

Hidayati, N. (2016). Role of regulators in technology transfer of similar biotherapeutic products (Indonesia’s experience).

Huzair, F., & Kale, D. (2015). Biosimilars and the long game. Trends in Biotechnology, 33(5), 250–252.

Meiller, J. (2016). What is A Monoclonal Antibody? http://nicb.ie/biotechnology/what-is-a-monoclonal-antibody/

Khraishi, M., Stead, D., Lukas, M., Scotte, F., & Schmid, H. (2016). Biosimilars: a multidisciplinary perspective. Clinical Therapeutics, 38(5), 1238–1249.

Kumar, R., Sigala, S., Malgarini, R. B., Pimpinella, G., Pani, L., Pecorelli, S., & Memo, M. (2015). Pharmacovigilance biosimilars: Regulatory status and implications across the world. Pharmacovigilance, 04(s3).

Li, E. C., Abbas, R., Jacobs, I. A., & Yin, D. (2015). Considerations in the early development of biosimilar products. Drug Discovery Today, 20(S2), 1–9.

Minghetti, P., Cilurzo, F., Franzé, S., Musazzi, U. M., & Itri, M. (2013). Low molecular weight heparins copies: are they considered to be generics or biosimilars? Drug Discovery Today, 18(5), 305–311.

Mueller, L. L. (2015). Jordan FDA issues a guideline for the registration of biosimilars. The National Law Review, XI(327).

Mulcahy, A. W., Predmore, Z., & Mattke, S. (2014). The cost savings potential of biosimilar drugs in the United States. Perspective, 1, 1–16.

Ogbru, O. (2020, 19 Oktober). Monoclonal antibodies. MedicineNet. https://www.medicinenet.com/monoclonal_antibodies/article.htm

Olech, E. (2016). Biosimilars: Rationale and current regulatory landscape. Seminars in Arthritis and Rheumatism, 45, S1–S10. http:/doi.org/10.1016/j.semarthrit.2016.01.001

Osakwe, O. (2016). Clinical development: Ethics and realities. Social Aspects of Drug Discovery, Development and Commercialization, 191.

Poh, J., & Tam, K. T. (2011). Registration of similar biological products-Singapore’s approach. Biologicals, 39(5), 343–345.

Schiestl, M. (2011). A biosimilar industry view on the implementation of the WHO guidelines on evaluating similar biotherapeutic products. Biologicals, 39, 297–299.

Siegel, J. F., & Royzman, I. (2017). Update on biosimilar approvals and pending applications in Europe and the U.S.

Tom-b. (2011). Angular stylized world map. Wikimedia. https://commons.wikimedia.org/wiki/File:Simple_world_map.svg

Tsuruta, L. R. M., Santos, L. dos, & Moro, A. M. (2015). Biosimilars advancements: Moving on to the Future. Biotechnol. Prog., 31(5), 1139–1149.

USFDA. (2014). Guidance for industry reference product exclusivity for biological products filed under section 351(a) of the PHS Act (Vol. 351).

USFDA. (2015a). Biosimilars: Questions and answers regarding implementation of the biologics price competition and Innovation Act of 2009-guidance for industry.

USFDA. (2015b). Quality considerations in demonstrating biosimilarity of a therapeutic protein product to a reference product-guidance for industry.

USFDA. (2015c). Scientific considerations in demonstrating biosimilarity to a reference product – guidance for industry.

USFDA. (2016). Clinical pharmacology data to support a demonstration of biosimilarity to a reference product: Guidance for industry.

USFDA. (2017b). Considerations in demonstrating interchangeability with a reference product: Guidance for industry (tidak diterbitkan).

USFDA. (2019). Considerations in demonstrating interchangeability with a reference product: Guidance for industry. https://www.fda.gov/media/124907/download

USFDA. (2020). Biosimilar Product Information: FDA-Approved Biosimilar Products. https://www.fda.gov/drugs/biosimilars/biosimilar-product-information.

Wang, J., & Chow, S.-C. (2012). On the regulatory approval pathway of biosimilar products. Pharmaceuticals, 5(4), 353–368.

Wekselman, K. (2012). Biosimilar medicinal products: Innovation in regulatory review and approval (1–6).

Welch, A. R. (2017). The Thai FDA’s approach to biologics and biosimilars.

WHO. (2009). Guidelines on evaluation of similar biotherapeutic products (SBPs).

WHO. (2016). International non-proprietary names (INN) for biological and biotechnological substances.

Abraham, I., & MacDonald, K. (2012). Clinical efficacy and safety of HX575, a biosimilar recombinant human erythropoietin, in the management of anemia. Biosimilars, 2, 13–25.

Beru, N., McDonald, J., Lacombe, C., & Goldwasser, E. (1986). Expression of the erythropoietin gene. Molecular Cellular Biology, 6, 2571–2575.

Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M., & Tassani, S. (2013). An estimation of the number of cells in the human body. Annals of Human Biology, 40(6), 463–471.

Boeger, H., Bushnell, A., Davis, R., Griesenbeck, J., Lorch, Y., Strattan, S., Westover, D., & Kornberg, D. (2005). Structural basis of eukaryotic gene transcription. FEBS Letters, 579, 899–903.

Boissel, J. P., Lee, W. R., Presnell, S. R., Cohen, F. E., & Bunn, H. F. (1993). Erythropoietin structure-function relationships. Mutant proteins that test a model of tertiary structure. Journal of Biological Chemistry, 268(21), 15983–93.

Bowen, R. (2018). Erythropoietin. http://www.vivo.colostate.edu/hbooks/pathphys/ endocrine/otherendo/epo.html

Brierley, R. A. (1998). Secretion of recombinant human insulin-like growth factor I (IGF-1). Methods in Molecular Biology, 103, 149–177.

Brinkman, E. C., Vander Linden, E. R., Sjoberg, L. R., Juneja, P. R., Crocker, N., & Varki A. (2000). Loss of N-glycolylneuraminic acid in human evolution: Implications for sialic acid recognition by siglecs. Journal.of Biological Chemistry, 756, 8633–8640.

Browne, J. K., Cohen, A. M., & Egrie, J. C. (1986). Erythropoietin: Gene cloning, protein structure, and biological properties. Cold Spring Harbor Symposia on Quantitative Biology, 51, 693–702.

Bunn, H. F. (2013). Erythropoietin. Cold Spring Harb Perspect Med. 3(3), a011619.

Byrne, B., Donohoe, G. G., & O’Kennedy, R. (2007). Sialic acids: Carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discovery Today, 12, 319–326.

Carnot, P., & Deflandre, C. l. (1906). Sur l’activité hématopoïetique de differents organes au cours de la régénération du sang. Compt. Rend. Acad Sci., 143, 432–43.

Cereghino, J. L., & Cregg. J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24, 45–66.

Conrad, K. P., Benyo, D. F., Westerhausen-Larsen, A., & Miles, T. M. (1996). Expression of erythropoietin by the human placenta. FASEB Journal, 10(7), 760–768.

Datta, P., Linhardt, R. J., & Sharfstein, S. T. (2013) An ‘omics approach towards CHO cell engineering. Biotechnol and Bioengineering, 110(5), 1255–71.

Devasahayam, M. (2007). Factors affecting the expression of recombinant glycoproteins. Indian Journal of Medical Research, 126(1), 22–27.

Egrie, J. C., & Browne, J. K. (2001). Development and characterization of novel erythropoiesis stimulating protein (NESP). British Journal of Cancer, 84(1), 3–10.

Egrie, J. C., Strickland, T. W., Lane, J., Aoki, K., Cohen, A. M., Smalling, R., Trail, G., Lin, F.K., Browne, J.K., & Hines, D. K. (1986). Characterization and biological effects of recombinant human erythropoietin. Immunobiology, 172(3–5), 213–224.

Erslev, A. (1953). Humoral regulation of red cell production. Blood, 8(4), 349–357.

Fisher, J. W., & Birdwell, B. J. (1961). The production of an erythropoietic factor by the in situ perfused kidney. Acta Haematologica, 26(4), 224–232.

Fried, W. (1972). The liver as a source of extrarenal erythropoietin production. Blood, 40, 671–677.

Fried, W. (2009). Erythropoietin and erythropoiesis. Experimental Hematology, 37(9), 1007–1015.

Gurney, C. W., Goldwasser, E., & Pan, C. (1957). Studies on erythropoiesis: VI. Erythropoietin in human plasma. The Journal of Laboratory and Clinical Medicine, 50(4), 534–542.

Hamilton, S. R., Davidson, R. C., Sethuraman, N., Nett, J. H., Jiang, Y., Rios, S., Bobrowicz, P., Stadheim, T.A., Li, H., Choi, B. K., Hopkins, D., Wischnewski, H., Roser, J., Mitchell, T., Strawbridge, R. R., Hoopes, J., Wildt, S., & Gerngross, T. U. (2016). Humanization of yeast to produce complex terminally sialylated glycoproteins. Science, 313(5792), 1441–1443.

Hodgson, G., & Toha, J. (1954). The erythropoietic effect of urine and plasma of repeatedly bled rabbits. Blood, 9(4), 299–309.

Jacobs, K., Shoemaker, C., Rudersdorf, R., Neill, S. D., Kaufman, R. J., Mufson, A., Seehra, J., Jones, S. S., Hewick, R., Fritsch, E. F., Kawakita, M., Shimizu, T., & Miyake, T. (1985). Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature, 313(6005), 806–810.

Jacobson, L. O., Goldwasser, E., Fried, W., & Plzak, L. (1957). Role of the kidney in erythropoiesis. Nature, 179(4560), 633–634.

Jayapal, K. P., Wlaschin, K. F., Hu, W. S., & Yap, M. G. S. (2007). Generation of recombinant Chinese hamster ovary cell lines. Chemical Engineering Progress, 103, 40–47.

Jelkmann, W. (1992). Erythropoietin: Structure, control of production, and function. Physiological Reviews, 72(2), 449–489.

Kalantar-Zadeh, K. (2017). History of erythropoiesis-stimulating agents, the development of biosimilars, and the future of anemia treatment in nephrology. American Journal of Nephrology, 45(3), 235–247.

Kim, J. Y., Kim, Y. G., & Lee, G. M. (2012). CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Applied Microbiology and Biotechnology, 93(3), 917–930.

Krumdieck, N. (1943). Erythropoietic substance in the serum of anemic animals. Proceeding of the Society for Experimental Biology and Medicine, 54(1), 14–17.

Kurtzman, C. P. (2009). Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J. Ind. Microbiol Biotechnol, 36(11), 1435–1438.

Lai, T., Yang, Y., & Ng, S. K. (2013). Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals, 6(5), 579–603.

Li, P., Anumanthan, A., Gao, X. G., Ilangovan, K., Suzara, V. V., Duzgunes, N., & Renugopalakrishnan, V. (2007). Expression of recombinant proteins in Pichia pastoris. Applied Biochemistry and Biotechnology, 142(2), 105–124.

Lin, F. K., Suggs, S., Lin, C. H., Browne, J. K., Smalling, R., Egrie, J. C., Chen, K. K., Fox, G. M., Martin, F., & Stabinsky, Z. (1985). Cloning and expression of the human erythropoietin gene. Proceedings of the National Academy of Sciences of the United States of America, 82(22), 7580–7584. https://doi.org/10.1073/pnas.82.22.7580

Lybecker, K. M. (2017). The biologics revolution in the production of drugs. https://www.fraserinstitute.org/sites/default/files/biologics-revolution-in-the-production-of-drugs.pdf

Miyake, T., Kung, C. K., & Goldwasser, E. (1977). Purification of human erythropoietin. Journal of Biological Chemistry, 252(15), 5558–5564.

Ng, T., Marx, G., Littlewood, T., & Macdougall, I. (2003). Recombinant erythropoietin in clinical practice. Postgraduate Medical Journal, 79(933), 367–376.

Puck, T. T. (1957). The genetics of somatic mammalian cells. Adv. Biology. Med. Physics, 5, 75–101.

Puck, T. T. (1985). Development of the Chinese hamster ovary (CHO) cell for use in somatic cell genetics. Dalam M. M. Gottesman (ed.), Molecular cell genetics. John Wiley and Sons.

Santoso, A., Fuad, A. M., Ningrum, R. A., Wijaya S. K., Herawati, N., Wardiana, A. (2007). Expression of human erythropoietin in barley stripe mosaic virus (BSMV). Proceeding of international seminar on pharmaceutics: Update on pharmaceutical innovation and new drug delivery system.

Santoso, A., & Edwards, M. C. (2003). Identification of the nucleotide substitutions required for Barley stripe mosaic hordeivirus pathogenicity to barley possessing the rsm1 gene. Phytopathology, 93, S75–S76.

Santoso, A., Rubiyana, Y., Wijaya, S. K., Herawati, N., Wardiana, A., & Ningrum., R. A. (2013). Heterologous expression and characterization of human erythropoietin in Pichia pastoris. International Journal of Pharmacy and Biomedical Sciences, 4(4), 187–196.

Santoso, A., Wisnuwardhani, P., Kusumawati, A., Romadhani, Y., Rubiyana, Y., & Romadhani, Y. (2015). Adaptation of Chinese hamster ovary K1 producing human erythropoietin to serum free suspension culture. Prosiding pertemuan ilmiah tahunan. Perhimpunan Mikrobiologi Indonesia.

Sautter, K., & Enenkel, B. (2005). Selection of high-producing CHO cells using NPT selection marker with reduced enzyme activity. Biotechnol and Bioengineering, 89(5), 530–538.

Skibeli, V., Nissen, L. G., & Torjesen, P. (2001). Sugar profiling proves that human serum erythropoietin differs from recombinant human erythropoietin. Blood, 98(13), 3626–3634.

Stein, R, S. (2003). The role of erythropoietin in the anemia of myelodysplastic syndrome. Clinical Lymphoma, 6, 52–55.

Suzana, A. (2017). Regulation of erythropoiesis. https://thebloodlustersmsu.wixsite.com/haematology/single-post/2017/04/02/regulation-of-erythropoiesis

Vega, A., Abad, S., Verdalles, U., Aragoncillo, I., Velazquez, K, Quiroga, B., Escudero, V., & JM López-Gómez, J. M. (2014). Dose equivalence between continuous erythropoietin receptor activator (CERA), Darbepoetin and Epoetin in patients with advanced chronic kidney disease. Hippokratia, 18(4), 315–318.

Viault, F. (1890). Sur l’augmentation considerable du nombre des globules rouges dans le sang chez les habitants des hautes plateaux de l’Amerique du sud. Comptes Rendus de I’Academie des Sciences, 111, 918–919.

Wurm, F. M. (2013). CHO quasispecies—implications for manufacturing processes. Processes, 1(3), 296–311.

Yin, H., & Blanchard, K. L. (2000). DNA methylation represses the expression of the human erythropoietin gene by two different mechanisms. Blood, 95(1), 111–119.

Zanjani. E. D., Ascensao, J. L., McGlave, P. B., Banisadre, M., & Ash, R. C. (1974). Studies on the liver to kidney switch of erythropoietin production. Journal of Clinical Investigation, 67(4), 1183–1188.

Arakawa, T., Yu, J., Chong, D.K., Hough, J., Engen, P.C., & Langridge, W.H. (1998). A plant-based cholera toxin B subunit-Insulin fusion protects against the development of autoimmune diabetes. Nat Biotechnol, 16 (10): 934–938.

Baeshen, N. A., Baeshen, M. N., Sheikh, A., Bora, R. S., Ahmed, M. M. M., Ramadan, H. A. I., Saini, K. S., & Redwan, E. M. (2014). Cell factories for insulin production. Microbial Cell Factories, 13(1), 141.

Baeshen, M. N., Bouback, T. A., Alzubaidi, M. A., Bora, R. S., Alotaibi, M. A. T, Alabbas, O. T. O, . Alshahrani, S. M., Aljohani, A. A. M., Munshi, R. A. A., Al-Hejin, A., Ahmed, M. M. M., Redwan, E. M., Ramadan, H. A. I., Saini, K. S., Baeshen, N. A. (2016). Expression and purification of c-peptide containing insulin using pichia pastoris expression system. BioMed Research International, 3423685. https://doi.org/10.1155/2016/3423685

Balamurugan V, Reddy G. R., & Suryanarayana, V. V. S. (2007). Pichia pastoris: A notable heterologous expression system for the production of foreign proteins-vaccines. Indian Journal of Biotechnology, 6, 175–186.

Brixius, P., Mollerup, I., Jensen, O. E., Halfar, M., Thömmes, J., & Kula, M. R. (2006). Expanded bed adsorption as a primary recovery step for the isolation of the insulin precursor MI3 process development and scale up. Biotechnology and Bioengineering, 93(1), 14–20.

Brondyk, W. H. (2009). Selecting an appropriate method for expressing a recombinant protein. Methods in Enzymology, 463, 131–147.

Camacho, L. H., Frost, C. P., Abella, E., Morrow, P. K., & Whittaker, S. (2014). Biosimilars 101: Considerations for US oncologists in clinical practice. Cancer Medicine, 3(4), 889–899.

Chance, R. E., & Frank, B. H. (1993). Research, development, production, and safety of biosynthetic human insulin. Diabetes Care, 16(Supplement 3), 133–142.

Chance, R.E, Glazer, N.B, & Wisher, K.L. (1999). Insulin Lispro (Humalog). Biopharmaceuticals, an Industrial Perspective, 149–171.

Chegg Inc. (t.t.) Introduction to genetic [gambar]. http://www.chegg.com/homework-help/questions-and-answers/post-translational-modification-preproinsulin-biologically-active-insulin-preproinsulin-in-q9647139

Cregg, J. M., Vedvick, T. S., & Gleeson, M. A. G. (1993). Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology, 9, 1067–1072.

Cregg, J. M., Cereghino, J. L., Shi, J., & Higgins, D. R. (2000). Recombinant protein expression in Pichia pastoris. Molecular biotechnology, 16(1), 23–52.

Cos, O., Ramón, R., Montesinos, J. L., & Valero, F. (2006). Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microbial Cell Factories, 5(1), 17.

Danielle, H, Streatfield, S. J., & Wycoff, K. (2001). Medical molecular farming: Production of antibodies, biopharmaceuticals and edible vaccines in plants, Trends Plant Sci, 6(5): 219–226.

Deckers, M, Deforce, D, Fraiture, M.A, & Roosens, N.H.C. (2020). Genetically Modified micro-organisms for industrial food enzyme productions: an overview. Foods, (9), 326.

Demain, A. L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27(3), 297–306.

DeVries, J. H., Gough, S. C., Kiljanski, J., & Heinemann, L. (2015). Biosimilar insulins: a E uropean perspective. Diabetes, Obesity and Metabolism, 17(5), 445–451.

Egel-Mitani, M., Brandt, J., & Vad, K. (1998). Method for the production of precursors of insulin, precursors of insulin analogues, and insulin like peptides (WIPO Patent, WO1998001473 A1).

Ferrer-Miralles, N., Domingo-Espín, J., Corchero, J. L., Vázquez, E., & Villaverde, A. (2009). Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories, 8(1), 17.

Gargouri, R.M, Soussi, S.A, Abbes, N.H, Amor, I.Y.H, Chabchoub, I.B, & Gargouri, A. (2012). Yeast as a tool for heterologous gene expression. Methods Mol Biol, (824): 359–370.

Gellissen, G. (2000). Heterologous protein production in methylotrophic yeasts. Applied microbiology and biotechnology, 54(6), 741–750.

Grashlund, S, Nordlund, P, dkk. (2008). Protein Production and Purification.Nat. Methods, 5(2): 134–146.

Gurramkonda, C., Polez, S., Skoko, N., Adnan, A., Gäbel, T., Chugh, D., Swaminathan, S., Khanna, N., Tisminetzky, S., & Rinas, U. (2010). Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microbial Cell Factories, 9(1), 31.

Heinemann, L. (2012). Biosimilar insulins. Expert Opinion on Biological Therapy, 12(8), 1009–1016.

Heinemann, L., & Hompesch, M. (2014). Biosimilar insulins basic considerations. Journal of Diabetes Science and Technology, 8(1), 6–13.

Heinemann, L., Home, P. D., & Hompesch, M. (2015). Biosimilar insulins: Guidance for data interpretation by clinicians and users. Diabetes, Obesity and Metabolism, 17(10), 911–918.

Heinemann, L., & Carter, A. W. (2017). Will biosimilar insulins be cheaper?. Diabetes Technology & Therapeutics, 19(9), 513–515.

Inan, M., Aryasomayajula, D., Sinha, J., & Meagher, M. M. (2006). Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnology and Bioengineering, 93(4), 771–778.

Insulin is a protein made up of two amino acid chains [gambar]. (t.t.) https://235.stem.org.uk/Diabetes/diabetes_16plus/diabetes_16plus5.html

Julius, D., Schekman, R., & Thorner, J. (1984). Glycosylation and processing of prepro-a-factor through the yeast secretory pathway. Cell, 36(2), 309–318.

Kamionka, M. (2011). Engineering of therapeutic proteins production in Escherichia coli. Current Pharmaceutical Biotechnology, 12(2), 268–274.

Kim, H., Yoo S. J., & Kang H. A. (2015). Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Research, 15, 1–16.

Kjeldsen, T., Brandt, J., Andersen, A. S., Egel-Mitani, M., Hach, M., Pettersson, A. F., & Vad, K. (1996). A removable spacer peptide in an a-factor-leader/insulin precursor fusion protein improves processing and concomitant yield of the insulin precursor in Saccharomyces cerevisiae. Gene, 170(1), 107–112.

Kjeldsen, T., Pettersson, A. F., & Hach, M. (1999). The role of leaders in intracellular transport and secretion of the insulin precursor in the yeast Saccharomyces cerevisiae. Journal of Biotechnology, 75(2), 195–208.

Kjeldsen, T. (2000). Yeast secretory expression of insulin precursors. Applied Microbiology and Biotechnology, 54(3), 277–286.

Kjeldsen, T., Balschmidt, P., Diers, I., Hach, M., Kaarsholm, N. C., & Ludvigsen, S. (2001). Expression of insulin in yeast: The importance of molecular adaptation for secretion and conversion. Biotechnology and Genetic Engineering Reviews, 18(1), 89–121.

Kjeldsen, T., Ludvigsen, S., Diers, I., Balschmidt, P., Sørensen, A. R., & Kaarsholm, N. C. (2002). Engineering-enhanced protein secretory expression in yeast with application to insulin. Journal of Biological Chemistry, 277(21), 18245–18248.

Kjeldsen, T. B., Ludvigsen, S. & Kaarsholm, N. C. (2006). Methods for making insulin precursors and insulin precursor analogs (US 7,087,408 B2). United States Patent.

Kjeldsen, T.B. (2006). Method for making human insulin precursors (US 7,105,314 B2). United States Patent.

Lavalle-González, F. J., & Khatami, H. (2014). The biosimilar insulin landscape: current developments. Postgraduate medicine, 126(6), 81–92.

Lin Cereghino, G. P., Lin Cereghino, J., Ilgen, C. & Cregg, J. M. (2002). Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Current Opinion in Biotechnology, 13(4), 329–332.

Liu, H., Zhou, X., Tian, S., Hao, X., You, J., & Zhang, Y. (2014). Two-step transpeptidation of the insulin precursor expressed in Pichia pastoris to insulin ester via trypsin-catalyzed cleavage and coupling. Biotechnology and Applied Biochemistry, 61(4), 408–417.

Macauley-Patrick, S., Fazenda, M. L., McNeil, B., & Harvey, L. M. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast, 22(4), 249–270.

Mansur, M., Cabello, C., Hernández, L., País, J., Varas, L., Valdés, J., Terrero, Y., Hidalgo, A., Plana, L., Besada, V., García, L., Lamazares, E., Castellanos, L., & Martínez, E. (2005). Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris. Biotechnology Letters, 27(5), 339–345.

Morihara, K., Ueno, Y., & Sakina, K. (1986). Influence of temperature on the enzymic semisynthesis of human insulin by coupling and transpeptidation methods. Biochemical Journal, 240(3), 803–810.

Nilsson, J., Jonasson, P., Samuelsson, E., Stahl, S., & Uhlen, M. (1996). Integrated production of human insulin and its C-peptide. Journal of Biotechnology, 48(3), 241–250.

Nurdiani, D., Hariyatun, H., & Kusharyoto, W. (2018). Secretory expression of human insulin precursor in Pichia pastoris using truncated a-Factor leader sequence and a short C-peptide. Indonesian Journal of Biotechnology, 23(2).

Nykiforuk, C. L., Boothe, J. G., Murray, E. W., Keon, R. G., Goren, H. J., Markley, N. A., & Moloney, M. M. (2006). Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnology Journal, 4(1), 77–85.

Ogurtsova, K., da Rocha Fernandes, J. D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N. H., Shaw, J. E., & Makaroff, L. E. (2017). IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice, 128, 40–50.

Pak, S. C. O., Hunt, S. M. N., Sleigh, M. J., & Gray, P. P. (1998). Expression of recombinant human insulin in Chinese hamster ovary cells is complicated by intracellular insulin-degrading enzymes. New Development and New Applications in Animal Cell Technology, 59–67.

Porro, D., Sauer, M., Branduardi, P., & Mattanovich, D. (2005). Recombinant protein production in yeasts. Molecular Biotechnology, 31(3), 245–259.

Potvin, G., Ahmad, A., & Zhang, Z. (2012). Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochemical Engineering Journal, 64, 91–105.

Sanger, F., Thompson, E. O. P., & Kitai, R. (1955). The amide groups of insulin. Biochemical Journal, 59(3), 509.

Soltanmohammadi, B., Javaran, M.J., Memari, H.R., & Mohebodini, M. (2014). Cloning, Transformation and Expression of proinsulin gene in Tomato (Lycopersicum esculentum Mill.). Jundishapur Journal of Natural Pharmaceutical Products, 9(1): 9–15.

Stratton, J., Chiruvolu, V., & Meagher, M. (1998). High cell-density fermentation. Pichia Protocols, 107–120.

Sunga, A. J., & Cregg, J. M. (2004). The Pichia pastoris formaldehyde dehydrogenase gene (FLD1) as a marker for selection of multicopy expression strains of P. pastoris. Gene, 330, 39–47.

Swidan, S. Z., & Montgomery, P. A. (1998). Effect of blood glucose concentrations on the development of chronic complications of diabetes mellitus. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 18(5), 961–972.

Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 72(2), 211.

Thim, L., Hansen, M. T., Norris, K., Hoegh, I., Boel, E., Forstrom, J., Ammerer, G., & Fiil, N. P. (1986). Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci. 83(18), 6766–6770. doi:10.1073/pnas.83.18.6766.

Vajo, Z., Fawcett, J., & Duckworth, W. C. (2001). Recombinant DNA technology in the treatment of diabetes: Insulin analogs. Endocrine Reviews, 22(5), 706–717.

Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J., & Govindarajan, S. (2006). Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics, 7(1), 285.

Walsh, G. (2005). Therapeutic insulins and their large-scale manufacture. Applied Microbiology and Biotechnology, 67(2), 151–159.

Walsh G. (2013). Biopharmaceuticals approval trends in 2013. Biopharm Int., 26(4), 54–56.

Wang, Y., Liang, Z. H., Zhang, Y. S., Yao, S. Y., Xu, Y. G., Tang, Y. H., Zhu, S. Q., Cui, D. F., & Feng, Y. M. (2001). Human insulin from a precursor overexpressed in the methylotrophic yeast Pichia pastoris and a simple procedure for purifying the expression product. Biotechnology and Bioengineering, 73(1), 74–79.

Waterham, H. R., Digan, M. E., Koultz, P. J., Lair, S. V., & Cregg, J. M. (1997). Isolation of the Pichia pastoris glyceraldehydes-3-phosphate dehydrogenese gene and regulation and use of its promoter. Gene, 186, 37–44.

Xie, T., Liu, Q., Xie, F., Liu, H., & Zhang, Y. (2008). Secretory expression of insulin precursor in Pichia pastoris and simple procedure for producing recombinant human insulin. Preparative Biochemistry & Biotechnology, 38(3), 308–317.

Yanagita, M., Nakayama, K., & Takeuchi, T. (1992). Processing of mutated proinsulin with tetrabasic cleavage sites to bioactive insulin in the non-endocrine cell line, COS-7. FEBS Letters, 311(1), 55–59.

Yao, C., Zhu, X., Wei, Y., Kou, Z., & Hu, K., (2015). Recent Advances in Vaccines and Drugs against the Ebola virus. Bing Du Xue Bao, 31(3): 287–292.

Zaykov, A., Mayer, J. & DiMarchi, R. (2016). Pursuit of a perfect insulin. Nat Rev Drug Discov 15, 425–439. https://doi.org/10.1038/nrd.2015.36

Zhu, T., Guo, M., Tang, Z., Zhang, M., Zhuang, Y., Chu, J., & Zhang, S. (2009). Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. Journal of Applied Microbiology, 107(3), 954–963.

Ascione, A., De Luca, M., Tartaglione, M. T., Lampasi, F., Di Costanzo, G. G., Lanza, A. G., & Leandro, G. (2010). Peginterferon Alfa-2a plus ribavirin is more effective than peginterferon alfa-2b plus ribavirin for treating chronic hepatitis c virus infection. Gastroenterology, 138(1), 116–122. https://doi.org/10.1053/j.gastro.2009.10.005

Baron, E., & Narula, S. (1990). From cloning to a commercial realization: Human alpha interferon. Critical Reviews in Biotechnology, 10(3), 179–190. https://doi.org/10.3109/07388559009038206

Bazhanova, E. D. (2005). Participation of interferon-alpha in regulation of apoptosis. Journal of Evolutionary Biochemistry and Physiology, 41(2), 127–133. https://doi.org/10.1007/s10893-005-0045-z

Bekisz, J., Baron, S., Balinsky, C., Morrow, A., & Zoon, K. C. (2010). Antiproliferative properties of type I and type II interferon. Pharmaceuticals, 3, 994–1015. https://doi.org/10.3390/ph3040994

Beldarraín, A., Cruz, Y., Cruz, O., Navarro, M., & Gil, M. (2001). Purification and conformational properties of a human interferon alpha2b produced in Escherichia coli. Biotechnology and Applied Biochemistry, 33, 173–182. https://doi.org/10.1042/BA20010001

Ceaglio, N., Etcheverrigaray, M., Kratje, R., & Oggero, M. (2008). Novel long-lasting interferon alpha derivatives designed by glycoengineering. Biochimie, 90, 437–449. https://doi.org/10.1016/j.biochi.2007.10.013

Cirelli, R., & Tyring, S. K. (1995). Major therapeutic uses of interferons. Clinical Immunotherapeutics, 3(1), 27–87. https://doi.org/10.1007/BF03259051

Commission B. P. (2009). British pharmacopoeia 2009 (eBOOK). Stationery Office.

Cozzio, A., Kempf, W., Schmid-Meyer, R., Gilliet, M., Michaelis, S., Scharer, L., Dummer, R. (2006). Intra-lesional low-dose interferon a2a therapy for primary cutaneous marginal zone B-cell lymphoma. Leukemia and Lymphoma, 47(5), 865–869. https://doi.org/10.1080/10428190500399698

Cregg, J. M., Cereghino, J. L., Shi, J., & Higgins, D. R. (2000). Recombinant protein expression in Pichia pastoris. Molecular Biotechnology, 16(1), 23–52. https://doi.org/10.1385/MB:16:1:23

Dorr R. T. (1993). Interferon-alpha in malignant and viral diseases. A review. Drugs, 45(2), 177–211. https://doi.org/10.2165/00003495-199345020-00003

Dufour, P., Husseini, F., Dreyfus, B., Curé, H., Martin, C., Prevost, G., Olivier, J.-P., Dumas, F., Duclos, B., Olivarea, R., Lezler, A., Bergerat, J.-P., Audhuy, B., Thill, L., & Oberling, F. (1996). 5-Fluorouracil versus 5-fluorouracil plus -interferon as treatment of metastatic colorectal carcinoma. A randomized study. Annals of Oncology: Official Journal of the European Society for Medical Oncology /ESMO, 7, 575–579. https://doi.org/10.1093/oxfordjournals.annonc.a010673

FDA. (2008). ROFERON®-A(Interferon alfa-2a, recombinant). https://www.fda.gov/media/74384/download

Fried, M. W., Shiffman, M. L., Reddy, K. R., Smith, C., Marinos, G., Gonçales, F. L., Jr, Häussinger, D., Diago, M., Carosi, G., Dhumeaux, D., Craxi, A., Lin, A., Hoffman, J., & Yu, J. (2002). Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. The New England Journal of Medicine, 347(13), 975–982. https://doi.org/10.1056/NEJMoa020047

Fischer, B., Sumner, I., & Goodenough, P. (1993). Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies. Biotechnology and Bioengineering, 41, 3–13. https://doi.org/10.1002/bit.260410103

Gao, B., Hong, F., & Radaeva, S. (2004). Host factors and failure of interferon-a treatment in hepatitis C virus. Hepatology, 39(4), 880–890. https://doi.org/10.1002/hep.20139

Grob, J. J., Dreno, B., de la Salmoniere, P., Delaunay, M., Cupissol, D., Guillot, B., Souteyrand, P., Sassolas, B., Cesarini, J.-P., Lionnet, S., Lok, C., Chastang, C., Bonerandi, J. J. (1998). Randomised trial of interferon a-2a as adjuvant therapy in resected primary melanoma thicker than 1·5 mm without clinically detectable node metastases. The Lancet, 351(9120), 1905–1910. https://doi.org/10.1016/S0140-6736(97)12445-X X

Haria, M., & Benfield, P. (1995). Interferon-alpha-2a. A review of its pharmacological properties and therapeutic use in the management of viral hepatitis. Drugs, 50(5), 873–896. https://doi.org/10.2165/00003495-199550050-00007

Herawati, N., Wardiana, A., & Ningrum, R. A. (2015). Expression of no affinity tagged recombinant human interferon alpha-2a in methylotrophic yeast Pichia pastoris. Annales Bogorienses, 19(2), 57–62.

Hermant, P., & Michiels, T. (2014). Interferon-lamda in the context of viral infections: Production, response, and therapeutic implications. Journal of Innate Immunity, 6(5), 563–574. https://doi.org/10.1159/000360084

Jonasch, E., & Haluska, F. G. (2001). Interferon in oncological practice: Review of interferon biology, clinical applications, and toxicities. The Oncologist, 6, 34–55. https://doi.org/10.1634/theoncologist.6-1-34

InfoDATIN. (2017). Situasi Penyakit Hepatitis B di Indonesia Tahun 2007. Pusat Data dan Informasi Kementerian Kesehatan RI. https://pusdatin.kemkes.go.id/resources/download/pusdatin/infodatin/Infodatin-situasi-penyakit-hepatitis-B-2018.pdf

Kalliolias, G. D., & Ivashkiv, L. B. (2010). Overview of the biology of type I interferons. Arthritis Research and Therapy, 12(SUPPL. 1), 1–9. https://doi.org/10.1186/ar2881

Kanwar, Y. S., Danesh, F. R., & Chugh, S. S. (2007). Contribution of proteoglycans towards the integrated functions of renal glomerular capillaries: a historical perspective. The American Journal of Pathology, 171(1), 9–13. https://doi.org/10.2353/ajpath.2007.070356

Kemenkes. (2014). InfoDATIN: Situasi dan analisis hepatitis. Pusat data dan Informasi (8).

Kemenkes. (2015). Situasi penyakit kanker. Pusat Data dan Informasi, 1, 1–5. https://doi.org/10.1007/s13398-014-0173-7.2

Klaus, W., Gsell, B., Labhardt, A. M., Wipf, B., & Senn, H. (1997). The three-dimensional high resolution structure of human interferon a-2a determined by heteronuclear NMR spectroscopy in solution. Journal of Molecular Biology, 274(4), 661–675. https://doi.org/10.1006/jmbi.1997.1396

Kontsek, P., & Kontseková, E. (1997). Forty years of interferon. Acta Virologica, 41(6), 349–353.

Mohamed, N., & Redwan, E. (2014). Therapeutic alpha-interferons protein: Structure, production, and biosimilar. Preparative Biochemistry & Biotechnology, 45. https://doi.org/10.1080/10826068.2014.907175

Neves, F. O., Ho, P. L., Raw, I., Pereira, C. A., Moreira, C., & Nascimento, A. L. T. O. (2004). Overexpression of a synthetic gene encoding human alpha interferon in Escherichia coli, 35, 353–359. https://doi.org/10.1016/j.pep.2004.02.005

Ningrum, R. A., Retnoningrum, D. S., Cahyati, Y., & Rachmawati, H. (2011). Optimization of human interferon a2b soluble protein overproduction and primary recovery of its inclusion bodies. Microbiology Indonesia, 5(1), 27–32. https://doi.org/10.5454/mi.5.1.5

Ningrum, R. A., Rahmatika, D. E., Retnoningrum, D. S., Wangsaatmadja, A. H., Sumirtapura, Y. C., & Rachmawati, H. (2012). Development of novel interferon alpha2b muteins and study the pharmacokinetic and biodistribution profiles in animal model. Journal of Biomedical Science and Engineering, 05, 104–112. https://doi.org/10.4236/jbise.2012.53014

Ningrum, R. A. (2014). Human interferon alpha-2b: A therapeutic protein for cancer treatment. Scientifica, 2014, 970315. https://doi.org/10.1155/2014/970315

Ningrum, R. A., Herawati, N., & Wardiana, A. (2017a). Development of higher molecular weight of recombinant human interferon alpha-2a by albumin fusion technology in methylotrophic yeast Pichia pastoris. International Journal on Advanced Science, Engineering and Information Technology, 7, 8. https://doi.org/10.18517/ijaseit.6.5.912

Ningrum, R. A., Santoso, A., & Herawati, N. (2017b). Overproduction, purification and characterization of human interferon alpha2a-human serum albumin fusion protein produced in methilotropic yeast Pichia pastoris. Journal of Physics: Conference Series, 835(1). https://doi.org/10.1088/1742-6596/835/1/012013

Ningrum, R. A. (2018). Human interferon alpha2a as anti hepatitis B and C. Indonesian Journal of Clinical Pharmacy, 6(4), 298–310. https://doi.org/10.15416/ijcp.2017.6.4.298

nti hepatitis B and C. Indonesian Journal of Clinical Pharmacy, 6(4), 298–310. https://doi.org/10.15416/ijcp.2017.6.4.298

Olsen, E. A., Rosen, S. T., Vollmer, R. T., Variakojis, D., Roenigk, H. H., Jr., Diab, N., & Zeffren, J. (1989). Interferon alfa-2a in the treatment of cutaneous T cell lymphoma. Journal of the American Academy of Dermatology, 20(3), 395–407. https://doi.org/10.1016/S0190-9622(89)70049-9

Menteri Kesehatan. (2017). Permenkes nomor 17 tahun 2017 tentang rencana aksi pengembangan industri farmasi dan ala kesehatan. http://www.rsi-ibnusina.com/media/file/86073182620PERMENKES-RI-NO-17-TAHUN-2017-TENTANG-RENCANA-AKSI-PENGEMBANGAN-INDUSTRI-FARMASI-DAN-ALAT-KESEHATAN.pdf.

Pestka, S. (2007). The interferons: 50 years after their discovery, there is much more to learn. Journal of Biological Chemistry, 282(28), 20047–20051. https://doi.org/10.1074/jbc.R700004200

Pyrhönen, S. O. (2004). Systemic therapy in metastatic renal cell carcinoma. Scandinavian Journal of Surgery, 93(2), 156–161.

Reddy, K. R., Modi, M. W., & Pedder, S. (2002). Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Advanced drug delivery reviews, 54(4), 571–586. https://doi.org/10.1016/s0169-409x(02)00028-5

Ricketts, R. R., Hatley, R. M., Corden, B. J., Sabio, H., & Howell, C. G. (1994). Interferon-alpha-2a for the treatment of complex hemangiomas of infancy and childhood. Annals of Surgery, 219(6), 605–614. https://doi.org/10.1097/00000658-199406000-00003

Rumi, M. G., Aghemo, A., Prati, G. M., D’Ambrosio, R., Donato, M. F., Soffredini, R., Ninno, E. D., Russo, A., & Colombo, M. (2010). Randomized study of peginterferon-a2a plus ribavirin vs peginterferon-a2b plus ribavirin in chronic hepatitis C. Gastroenterology, 138(1), 108–115. https://doi.org/10.1053/j.gastro.2009.08.071

Samuel C. E. (2001). Antiviral actions of interferons. Clinical Microbiology Reviews, 14(4), 778–809. https://doi.org/10.1128/CMR.14.4.778-809.2001

Smith, J. W., 2nd, Longo, D. L., Urba, W. J., Clark, J. W., Watson, T., Beveridge, J., Conlon, K. C., Sznol, M., Creekmore, S. P., & Alvord, W. G. (1991). Prolonged, continuous treatment of hairy cell leukemia patients with recombinant interferon-alpha 2a. Blood, 78(7), 1664–1671.

Solá, R. J., & Griebenow, K. (2010). Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 24(1), 9–21. https://doi.org/10.2165/11530550-000000000-00000

Subramanian, G. M., Fiscella, M., Lamousé-smith, A., Zeuzem, S., & Mchutchison, J. G. (2007). Albinterferon a-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nature Biotechnology, 25, 1411–1419. https://doi.org/10.1038/nbt1364

Sugio, S., Kashima, A., Mochizuki, S., Noda, M., & Kobayashi, K. (1999). Crystal structure of human serum albumin at 2.5 A resolution. Protein engineering, 12(6), 439–446. https://doi.org/10.1093/protein/12.6.439

Tryggvason, K., & Wartiovaara, J. (2005). How does the kidney filter plasma? Physiology, 20(2), 96–101. https://doi.org/10.1152/physiol.00045.2004

Vilcek, J. (2006). Fifty years of interferon research: Aiming at a moving target. Immunity, 25(3), 343–348. https://doi.org/10.1016/j.immuni.2006.08.008

Wang, Y., Youngster, S., Grace, M., Bausch, J., Bordens, R., & Wyss, D. F. (2015). Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Advanced Drug DeliveryReviews, 54(4), 547–570.

Wardiana, A., & Ningrum, R. A. (2015). Roferon-A: a biologic product of human interferon alpha 2a. Annales Bogorienses, 19(2), 1–11.

Zhao, H. L., Xue, C., Du, J. L., Ren, M., Xia, S., & Liu, Z. M. (2012). Balancing the pharmacokinetics and pharmacodynamics of interferon-a2b and human serum albumin fusion protein by proteolytic or reductive cleavage increases its in vivo therapeutic efficacy. Molecular Pharmaceutics, 9(3), 664–670. https://doi.org/10.1021/mp200347q

Zhao, H. L., Xue, C., Wang, Y., Li, X. Y., Xiong, X. H., Yao, X. Q., & Liu, Z. M. (2007). Circumventing the heterogeneity and instability of human serum albumin-interferon-a2b fusion protein by altering its orientation. Journal of Biotechnology, 131(3), 245–252. https://doi.org/10.1016/j.jbiotec.2007.04.016

Abolghasemi, S., Babaeipour, V., Mofid, M. R., & Divsalar, A. (2010). An efficient purification method for high recovery of Recombinant Human Granulocyte Colony Stimulating Factor from recombinant E. coli. International Journal of Environmental Science and Development 1(2), 111–114. https://doi.org/10.7763/IJESD.2010.V1.22

Adusumilli, A., Kattepogu, R. R. & Krothapalli, S. R. (2012). The clinical applications of Hematopoietic growth factor-GCSF. Asian Journal of Biomedical and Pharmaceutical Sciences, 2(14), 1–10.

Anderlini, P., & Champlin, R. E. (2008). Biologic and molecular effects of granulocyte colony-stimulating factor in healthy individuals: Recent findings and current challenges. Blood, 111(4), 1767–1772.

Arai, K., Yokota, T., Miyajima, A., Arai, N., & Lee, F. (1986). Molecular biology of T-cell-derived lymphokines: a model system for proliferation and differentiation of hemopoietic cells. Bioessays, 5(4), 166–171.

Avalos, B. R. (1996). Molecular analysis of the granulocyte colony-stimulating factor receptor. Blood, 88(3), 761–777.

Beekman, R., & Touw, I. P. (2010). G-CSF and its receptor in myeloid malignancy. Blood, The Journal of the American Society of Hematology, 115(25), 5131–5136.

Beekman, R., Valkhof, M. G., Sanders, M. A., Van Strien, P. M., Haanstra, J. R., Broeders, L., Geertsma-Kleinekoort, W. M., Veerman, A. J. P,Valk, P. J. M., Verhaak, R. G., Löwenberg, B., & Touw, I. P. (2012). Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia. Blood, The Journal of the American Society of Hematology, 119(22), 5071–5077.

Beel, K., & Vandenberghe, P. (2009). G-CSF receptor (CSF3R) mutations in X-linked neutropenia evolving to acute myeloid leukemia or myelodysplasia. Haematologica, 94(10), 1449.

Beveridge, R. A., Miller, J. A., Kales, A. N., Binder, R. A., Robert, N. J., Harvey, J. H., Windsor, K., Gore, I., Cantrell, J., Thompson, K. A., Taylor, W. R., Barnes, H. M., Schiff, S. A., Shields, J. A., Cambareri, R. J., Butler, T. P., Meister, R. J, Feigert, J. M., Norgard, M. J., … Sheridan, M. J. (1998). A comparison of efficacy of sargramostim (yeast-derived RhuGM-CSF) and filgrastim (bacteria-derived RhuG-CSF) in the therapeutic setting of chemotherapy-induced myelosuppression. Cancer investigation, 16(6), 366–373.

Bradley, T. R., & Metcalf, D. (1966). The growth of mouse bone marrow cells in vitro. Australian Journal of Experimental Biology and Medical Science, 44(3), 287–300.

Burgess, A. W., & Nicola, N. A. (1983). Effects of 12-0-tetradecanoylphorbol-13-acetate (TPA) on the proliferation of granulocyte-macrophage colony-forming cells. Blood, 61(3), 575–579.

Burgess, A. W., & Nicola, N. (1983). Growth factors and stem cells. Academic Press.

Burgess, A.W. (1985). Growth factors and cancer. Australia and New Zealand Journal of Surgery, 55,105–110.

Bussolino, F., Wang, J. M., Defilippi, P., Turrini, F., Sanavio, F., Edgell, C. J., Aglietta, M., Arese, P., & Mantovani, A. (1989). Granulocyte-and granulocyte–macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature, 337(6206), 471–473.

Cesaro, S., Chinello, P., Silvestro, G., Marson, P., Picco, G., Varotto, S., Pittalis, S., & Zanesco, L. (2003). Granulocyte transfusions from G-CSF-stimulated donors for the treatment of severe infections in neutropenic pediatric patients with onco-hematological diseases. Supportive Care in Cancer, 11(2), 101–106.

Cordon usage database (t.t.). www.kazusa.or.jp/codon/Cutler, R. L., Metcalf, D., Nicola, N. A., & Johnson, G. R. (1985). Purification of a multipotential colony-stimulating factor from pokeweed mitogen-stimulated mouse spleen cell conditioned medium. The Journal of biological chemistry, 260(11), 6579–6587.

Dale, D. C. (1998). The discovery, development and clinical applications of granulocyte colony-stimulating factor. Transactions of the American Clinical and Climatological Association, 109, 27.

Demetri, G. D., & Griffin, J. D. (1991). Granulocyte colony-stimulating factor and its receptor. Blood, 78(11), 2791–2808.

Disis, M. L. (2005). Clinical use of subcutaneous G-CSF or GM-CSF in malignancy. Oncology, 19(4_Suppl_2).

Dong, F., & Larner, A. C. (2000). Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): Evidence for the role of a tyrosine kinase activity distinct from the Janus kinases. Blood, The Journal of the American Society of Hematology, 95(5), 1656–1662.

Doulatov, S., Notta, F., Laurenti, E., & Dick, J. E. (2012). Hematopoiesis: a human perspective. Cell Stem Cell, 10(2), 120–136.

Faraji, F., Mofid, M. R., Babaeipour, V., Divsalar, A., & Dehaghani, S. A. (2010). The structural characterization of recombinant human granulocyte colony stimulating factor. International Journal of Environmental Science and Development, 1(1), 15.

Forrest, G. N., Schimpff, S. C., & Cross, A. (2002). Febrile neutropenia, colony-stimulating factors and therapy: Time for a new methodology? Supportive Care in Cancer, 10, 177–18. https://doi.org/10.1007/s00520-002-0347-2

Foster, R., Jr, Metcalf, D., Robinson, W. A., & Bradley, T. R. (1968). Bone marrow colony stimulating activity in human sera. Results of two independent surveys in Buffalo and Melbourne. British journal of haematology, 15(2), 147–159. https://doi.org/10.1111/j.1365-2141.1968.tb01524.x

Fuad, A. M., Agustiyanti, D. F., Yuliawati, Fidyani, C., Aminah, Santoso, A. (2008). Construction of a CSF3-synthetic gene for recombinant human G-CSF expression in yeast using TBIO (thermodynamically balanced inside-out) method. Journal of Biotechnology Research in Tropical Region, 1, 1–7.

Fuad, A. M., Santoso, A., Yuliawati, Agustiyanti, D. F., & Aminah. (2010). Ekspresi dan produksi protein terapeutik human G-CSF rekombinan melalui pendekatan biologi sintetik pada sistem ekspresi eukaryot (yeast). Laporan akhir tahun kegiatan program kompetitif LIPI tahun 2010.

Fuad, A. M., Santoso, A., & Kusharyanto, W. (2017). Pengembangan produk obat biosimilar human erytropoietin (hEPO), human granulocyte colony stimulating factor (hG-CSF) dan human insulin. Laporan akhir tahun,kegiatan program unggulan LIPI tahun 2017.

Gao, X., Yo, P., Keith, A., Ragan, T. J., & Harris, T. K. (2003). Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: A novel method of primer design for high-fidelity assembly of longer gene sequences. Nucleic Acids Research, 31(22), e143. https://doi.org/10.1093/nar/gng143

Garcia-Carbonero, R., Mayordomo, J. I., Tornamira, M.V., López-Brea, M., Rueda, A., Guillem, V., Arcediano, A., Yubero, A., Ribera, F., Gómez, C., Trés, A., Pérez-Gracia, J. L., Lumbreras, C., Hornedo, J., Cortés-Funes, H., & Paz-Ares, L. (2001). Granulocyte colony-stimulating factor in the treatment of high-risk febrile neutropenia: a multicenter randomized trial. Journal of the National Cancer Institute, 93(1), 31–38. https://doi.org/10.1093/jnci/93.1.31

Germeshausen, M., Skokowa, J., Ballmaier, M., Zeidler, C., & Welte, K. (2008). G-CSF receptor mutations in patients with congenital neutropenia. Current Opinion in Hematology, 15(4), 332–337. https://doi.org/10.1097/MOH.0b013e328303b9f6

Greil, R., & Psenak, O. (2007). Hematopoietic growth factors: ESMO recommendations for the application. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 18, ii89. https://doi.org/10.1093/annonc/mdn107

Hanazono, Y., Hosoi, T., Kuwaki, T., Matsuki, S., Miyazono, K., Miyagawa, K., & Takaku, F. (1990). Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils. Experimental Hematology, 18(10), 1097–1103.

Hara, M., Yuasa, S., Shimoji, K., Onizuka, T., Hayashiji, N., Ohno, Y., Arai T, Hattori, F., Kaneda, R., Kimura, K., Makino, S., Sano, M., & Fukuda, K. (2011). G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. Journal of Experimental Medicine, 208(4), 715–727. https://doi.org/10.1084/jem.20101059

Hattori, K., Shimizu, K., Takahashi, M., Tamura, M., Oheda, M., Ohsawa, N., & Ono, M. (1990). Quantitative in vivo assay of human granulocyte colony-stimulating factor using cyclophosphamide-induced neutropenic mice. Blood, 75(6), 1228–1233.

Hill, C.P., Osslund, T.D., & Eisenberg, T. (1993). The structure of granulocyte-colony stimulating factor (G-CSF) and its relationship to other growth factors. Proceedings of the National Academy of Sciences of the USA, 90, 5167–71. https://doi.org/10.1073/pnas.90.11.5167

Hughes, W.T., Armstrong, D., Bodey, G. P., Bow, E. J., Brown, A. E., Calandra, T., Feld, R., Pizzo, P. A., Rolston, K.V., Shenep, J. L., & Young, L. S. (2002). 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clinical Infectious Diseases, 730–751. https://doi.org/10.1086/339215

Hunter, M. G., & Avalos, B. R. (1998). Phosphatidylinositol 3-kinase and SH2-containing inositol phosphatase (SHIP) are recruited by distinct positive and negative growth-regulatory domains in the granulocyte colony-stimulating factor receptor. The Journal of Immunology, 160(10), 4979–4987.

Ichikawa, Y., Pluznik, D. H., & Sachs, L. (1966). In vitro control of the development of macrophage and granulocyte colonies. Proceedings of the National Academy of Sciences of the USA, 56(2), 488. https://doi.org/10.1073/pnas.56.2.488

Jones, T. C. (1996). The effect of granulocyte-macrophage colony stimulating factor (rGM-CSF) on macrophage function in microbial disease. Medical Oncology, 13(3), 141–144. https://doi.org/10.1007/BF02990842

Kanda, N., Fukushige, S. I., Murotsu, T., Yoshida, M. C., Tsuchiya, M., Asano, S., Kaziro, Y., & Nagata, S. (1987). Human gene coding for granulocyte-colony stimulating factor is assigned to the q21-q22 region of chromosome 17. Somatic Cell and Molecular Genetics, 13(6), 679–684. https://doi.org/10.1007/BF01534488

Kawamoto, H., Ikawa, T., Masuda, K., Wada, H., & Katsura, Y. (2010). A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunological Reviews, 238(1), 23–36. https://doi.org/10.1111/j.1600-065X.2010.00959.x

Kuethe, F., Figulla, H.R., Voth, M., Richartz, B.M., Opfermann, T., Sayer, H.G., Krack A., Fritzenwanger, M., Höffken, K., Gottschild, D., & Werner, G. S. (2004). Mobilization of stem cells by granulocyte colony-stimulating factor for the regeneration of myocardial tissue after myocardial infarction. DMW-Deutsche Medizinische Wochenschrift, 129(09), 424–428. https://doi.org/10.1055/s-2004-820061

Lieschke, G. J., Grail, D., Hodgson, G., Metcalf, D., Stanley, E., Cheers, C., Fowler, K. J., Basu, S., Zhan, Y. F., & Dunn, A. R. (1994). Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood, 84(6), 1737–1746.

Link, D. C. (2000). Mechanisms of granulocyte colony-stimulating factor-induced hematopoietic progenitor cell mobilization. Dalam Saunders, W. B. (Eds). Seminars in hematology, 37, 25–32. https://doi.org/10.1016/S0037-1963(00)90086-6.

Liu, F., Wu, H.Y., Wesselschmidt, R., Kornaga, T., & Link, D. C. (1996). Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor–deficient mice. Immunity, 5(5), 491–501. https://doi.org/10.1016/s1074-7613(00)80504-x.

Lundby A., Olsen J. V. (2011). GeLCMS for in-depth protein characterization and advanced analysis of proteomes. Dalam Gevaert K., & Vandekerckhove J. (Eds.). Gel-free proteomics. Methods in molecular biology (methods and protocols), 753, (143–155). Humana Press. https://doi.org/10.1007/978-1-61779-148-2_10

Lyman G. H. (2006). Chemotherapy dose intensity and quality cancer care. Oncology 20(14 Suppl 9), 16–25.

Mehta, H. M., Malandra, M., & Corey, S. J. (2015). G-CSF and GM-CSF in Neutropenia The Journal of Immunology, 195(4), 1341–1349. https://doi.org/10.4049/jimmunol.1500861

Mellstedt, H., Niederwieser, D., & Ludwig, H. (2008). The challenge of biosimilars. Ann. Oncol., 19, 411– 419. https://doi.org/10.1093/annonc/mdm345

Metcalf, D., Moore, M. A., & Warner, N. L. (1969). Colony formation in vitro by myelo-monocytic leukemic cells. Journal of the National Cancer Institute, 43(4), 983–1001.

Metcalf D. (1987). Hemopoietic growth factors and oncogenes in myeloid leukemia development. Haematology and blood transfusion, 31, 16–25. https://doi.org/10.1007/978-3-642-72624-8_4

Metcalf, D. (1989). The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature, 339(6219), 27. https://doi.org/10.1038/339027a0

Metcalf, D. (1990). The colony stimulating factors discovery, development, and clinical applications. Cancer, 65(10), 2185–2195. https://doi.org/10.1002/1097-0142(19900515)65:10<2185::AID-CNCR2820651005>3.0.CO;2-4

Metcalf, D. (2010). The colony-stimulating factors and cancer. Nature Reviews Cancer, 10(6), 425. https://doi.org/10.1038/nrc2843

Molineux, G., Foote, M., & Arvedson, T. (Eds.). (2012). Twenty years of G-CSF: Clinical and non-clinical discoveries (Ebook). Springer Science & Business Media.

Morikawa, K., Morikawa, S., Nakamura, M., & Miyawaki, T. (2002). Characterization of granulocyte colony-stimulating factor receptor expressed on human lymphocytes. British Journal of Haematology, 118(1), 296–304. https://doi.org/10.1046/j.1365-2141.2002.03574.x

Morrison, S. J., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441(7097), 1068. https://doi.org/10.1038/nature04956

Nagata, S. (1989). Gene structure and function of granulocyte colony-stimulating factor. Bioassays, 10(4), 113–117. https://doi.org/10.1002/bies.950100405

Nagata, S., Tsuchiya, M., Asano, S., Kaziro, Y., Yamazaki, T., Yamamoto, O., Hirata, Y., Kubota, N., Oheda, M., Nomura, H., & Ono, M. (1986). Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature, 319(6052), 415. https://doi.org/10.1038/319415a0

Nagata, S., Tsuchiya, M., Asano, S., Yamamoto, O., Hirata, Y., Kubota, N., Oheda, M. Nomura, H. & Yamazaki, T. (1986). The chromosomal gene structure and two mRNAs for human granulocyte colony-stimulating factor. The EMBO Journal, 5(3), 575–581. https://doi.org/10.1002/j.1460-2075.1986.tb04249.x

Nicola, N. A., Metcalf, D., Matsumoto, M., & Johnson, G. R. (1983). Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. Journal of Biological Chemistry, 258(14), 9017–9023.

Nicola, N. A., Begley, C. G., & Metcalf, D. (1985). Identification of the human analogue of a regulator that induces differentiation in murine leukemic cells. Nature, 314(6012), 625. https://doi.org/10.1038/314625a0

Nicola, N. A., & Metcalf, D. (1986). Specificity of action of colony-stimulating factors in the differentiation of granulocytes and macrophages. Ciba Foundation Symposium, 118, 7–28. https://doi.org/10.1002/9780470720998.ch2

Nienaber, C.A., Petzsch, M., Kleine, H.D., Eckard, H., Freund, M., & Ince, H. (2006). Effects of granulocyte colony-stimulating factor on mobilization of bone marrow-derived stem cells after myocardial infarction in humans. Nature Reviews Cardiology, 3(S1), S73. https://doi.org/10.1038/ncpcardio0443

Ozer, H., Armitage, J. O., Bennett, C. L., Crawford, J., Demetri, G. D., Pizzo, P.A., Schiffer, C. A., Smith T. J., Somlo, G., Wade, J. C., Wade, J. L. 3rd, Winn, R. J., Wozniak, A. J., & Somerfield, M. R. (2000). 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based,clinical practice guidelines. American Society of Clinical Oncology Growth Factors Expert Panel. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 18(20), 3558. https://doi.org/10.1200/JCO.2000.18.20.3558

Ozkaynak, M. F., Krailo, M., Chen, Z., & Feusner, J. (2005). Randomized comparison of antibiotics with and without granulocyte colony-stimulating factor in children with chemotherapy-induced febrile neutropenia: a report from the Children’s Oncology Group. Pediatric Blood & Cancer, 45(3), 274–280. https://doi.org/10.1002/pbc.20366

Paul, M., Ram, R., Kugler, E., Farbman, L., Peck, A., Leibovici, L., Lahav, M., Yeshurun, M., Sphilberg, O., Herscovici, C., Wolach, O., Itchaki, G., Bar-Natan M., Vidal, L., Gafter-Gvili, A., & Raanani, P. (2014). Subcutaneous versus intravenous granulocyte colony stimulating factor for the treatment of neutropenia in hospitalized hematooncological patients: Randomized controlled trial. American Journal of Hematology, 89(3), 243–248. https://doi.org/10.1002/ajh.23622

Platzer, E., Oez, S., Welte, K., Sendler, A., Gabrilove, J. L., Mertelsmann, R., Moore, M. A., & Kalden, J. R. (1986). Human pluripotent hemopoietic colony stimulating factor: Activities on human and murine cells. Immunobiology, 172(3–5), 185–193. https://doi.org/10.1016/S0171-2985(86)80098-5

Pratiwi, R. D., Agustiyanti, D. F., Dewi, T. I. T., Herlina, N., Dewi, K. S., Yuliawati, Aminah, Fuad, A. M. (2020). Bioassay of recombinant human granulocyte colony stimulating factor (rhG-CSF) for neutropenia treatment in male Sprague dawley rats. Molecular and Cellular Biomedical Sciences, 4(1), 10–17. https://doi.org/10.21705/mcbs.v8i1.81

Puigbò, P., Bravo, I. G., & Garcia-Vallvé, S. (2008). E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics, 9(1), 65. https://doi.org/10.1186/1471-2105-9-65

Rapoport, A. P., Abboud, C. N., & DiPersio, J. F. (1992). Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF): Receptor biology, signal transduction, and neutrophil activation. Blood reviews, 6(1), 43–57. https://doi.org/10.1016/0268-960x(92)90007-d

Ripa, R. S., Wang, Y., Jørgensen, E., Johnsen, H. E., Hesse, B., & Kastrup, J. (2006). Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte colony-stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. European Heart Journal, 27(15), 1785–1792. https://doi.org/10.1093/eurheartj/ehl117

Ro, L.S., Chen, S.R., Chao, P.K., Lee, Y.L., & Lu, K.T. (2009). The potential application of granulocyte colony stimulating factor therapy on neuropathic pain. Chang Gung Med. J., 32(3), 235–346.

Sachs, L. (1990). The control of growth and differentiation in normal and leukemic blood cells. Cancer, 65(10), 2196–2206. https://doi.org/10.1002/1097-0142(19900515)65:10<2196::AID-CNCR2820651006>3.0.CO;2-Y

Sanchez-Ramos, J., Song, S., Cao, C., & Arendash, G. (2008). The potential of hematopoietic growth factors for treatment of Alzheimer’s disease: a mini-review. BMC neuroscience, 9(2), S3. https://doi.org/10.1186/1471-2202-9-S2-S3

Schabitz, W. R., Kollmar, R., Schwaninger, M., Juettler, E., Bardutzky, J., Scholzke, M. N., Sommer, C., & Schwab, S. (2003). Neuroprotective effect of granulocyte colony–stimulating factor after focal cerebral Ischemia. Stroke, 34(3), 745–751. https://doi.org/10.1161/01.STR.0000057814.70180.17

Schäbitz, W. R., & Schneider, A. (2007). New targets for established proteins: Exploring G-CSF for the treatment of stroke. Trends in Pharmacological Sciences, 28(4), 157–161. https://doi.org/10.1016/j.tips.2007.02.007

Schneider, A., Krüger, C., Steigleder, T., Weber, D., Pitzer, C., Laage, R., Aronowski J, Maurer, M.H., Gassler, N., Mier, W., Hasselblatt, M., Kollmar, R., Schwab, S., Sommer, C., Bach, A., Kuhn, H.G., & Schäbitz, W.R. (2005a). The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. The Journal of Clinical Investigation, 115(8), 2083–2098. https://doi.org/10.1172/JCI23559

Schneider, A., Kuhn, H. G., & Schäbitz, W. R. (2005b). Review a role for G-CSF (granulocyte colony- stimulating factor) in the central nervous system. Cell cycle, 4(12), 1753–1757. https://doi.org/10.4161/cc.4.12.2213

Shimoda, K., Feng, J., Murakami, H., Nagata, S., Watling, D., Rogers, N. C., Stark, G. R., Kerr, I. M., & Ihle, J. N. (1997). Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor. Blood, 90(2), 597–604.

Shimoda, K., Okamura, S., Harada, N., Kondo, S., Okamura, T., & Niho, Y. (1993). Identification of a functional receptor for granulocyte colony-stimulating factor on platelets. The Journal of Clinical Investigation, 91(4), 1310–1313. https://doi.org/10.1172/JCI116330

Simmers, R. N., Smith, J., Shannon, M. F., Wong, G., Lopez, A. F., Baker, E., Sutherland G. R., & Vadas, M. A. (1988). Localization of the human G-CSF gene to the region of a breakpoint in the translocation typical of acute promyelocytic leukemia. Human genetics, 78(2), 134–136. https://doi.org/10.1007/BF00278182

Sivakumar, R., Atkinson, M. A., Mathews, C. E., & Morel, L. (2015). G-CSF: a friend or foe? Immunome Research, 11(S2), 1.

Smith, T. J., Khatcheressian, J., Lyman, G. H., Ozer, H., Armitage, J. O., Balducci, L., Bennett, C. L., Cantor, S. B., Crawford, J., Cross, S. J., Demetri, G., Desch, C. E., Pizzo, P. A., Schiffer, C. A., Schwartzberg, L., Somerfield, M. R., Somlo, G., Wade, J. C., Wade, J. L., Winn, R. J., … Wolff, A. C. (2006). 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 24(19), 3187–3205. https://doi.org/10.1200/JCO.2006.06.4451

Souza, L. M., Boone, T. C., Gabrilove, J., Lai, P. H., Zsebo, K. M., Murdock, D. C., Chazin, V. R., Bruszewski, J., Lu, H., Chen, K. K., Barent, J., Platzer, E., Moore, M. A., Mertelsmann, R., & Welte, K. (1986). Recombinant human granulocyte colony-stimulating factor: Effects on normal and leukemic myeloid cells. Science, 232(4746), 61–65. https://doi.org/10.1126/science.232.4746.61

Stanley, E. R., Hansen, G., Woodcock, J., & Metcalf, D. (1975). Colony stimulating factor and the regulation of granulopoiesis and macrophage production. Federation proceedings, 34(13), 2272–2278.

Stanley, E. R., & Heard, P. M. (1977). Factors regulating macrophage production and growth. Purification and some properties of the colony stimulating factor from medium conditioned by mouse L cells. The Journal of biological chemistry, 252(12), 4305–4312.

Sun, D., Andayani, T. M., Altyar, A., MacDonald, K., & Abraham, I. (2015). Potential cost savings from chemotherapy-induced febrile neutropenia with biosimilar filgrastim and expanded access to targeted antineoplastic treatment across the European Union G5 countries: a simulation study. Clin Ther. https://doi.org/10.1016/j.clinthera.2015.01.011

Suzuki, K., Nagashima, K., Arai, M., Uno, Y., Misao, Y., Takemura, G., Nishigaki, K., Minatoguchi, S., Watanabe, S., Tei, C., & Fujiwara, H. (2006). Effect of granulocyte colony-stimulating factor treatment at a low dose but for a long duration in patients with coronary heart disease. Circulation Journal, 70(4), 430–437. https://doi.org/10.1253/circj.70.430

Takano, H., Ohtsuka, M., Akazawa, H., Toko, H., Harada, M., Hasegawa, H., Nagai, T. & Komuro, I. (2003). Pleiotropic effects of cytokines on acute myocardial infarction: G-CSF as a novel therapy for acute myocardial infarction. Current Pharmaceutical Design, 9(14), 1121–1127. https://doi.org/10.2174/1381612033455008

Theilgaard-Mönch, K., Jacobsen, L. C., Borup, R., Rasmussen, T., Bjerregaard, M. D., Nielsen, F. C., Cowland, J. B., & Borregaard, N. (2005). The transcriptional program of terminal granulocytic differentiation. Blood, 105(4), 1785–1796. https://doi.org/10.1182/blood-2004-08-3346

Tian, S. S., Lamb, P., Seidel, H. M., Stein, R. B., & Rosen, J. (1994). Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood, 84(6), 1760–1764.

Tsuchiya, M., Asano, S., Kaziro, Y., & Nagata, S. (1986). Isolation and characterization of the cDNA for murine granulocyte colony-stimulating factor. Proceedings of the National Academy of Sciences of the USA, 83(20), 7633–7637. https://doi.org/10.1073/pnas.83.20.7633

Tweardy, D. J., Cannizzaro, L. A., Palumbo, A. P., Shane, S., Huebner, K., Vantuinen, P., Ledbetter D. H., Finan J. B., Nowell P. C., & Rovera, G. (1987). Molecular cloning and characterization of a cDNA for human granulocyte colony-stimulating factor (G-CSF) from a glioblastoma multiforme cell line and localization of the G-CSF gene to chromosome band 17q21. Oncogene Research, 1(3), 209–220.

Velasco, R. P. (2010). Granulocyte colony-stimulating factor use in a large British hospital: Comparison with published experience. Pharmacy Practice, 8(4), 213. https://doi.org/10.4321/s1886-36552010000400002

Wang, C. Z., Liu, J. F., & Geng, X. D. (2005). Refolding with simultaneous purification of recombinant human (GCSF) from E. coli using strong anion exchange chromatography. Chinese Chemical Letters, 16(3), 389–392.

Ward, A. C., Oomen, S. P. M. A., Smith, L., Gits, J., Van Leeuwen, D., Soede-Bobok, A. A., Erpelinck-Verschueren, C.A., Yi, T., & Touw, I. P. (2000). The SH2 domain-containing protein tyrosine phosphatase SHP-1 is induced by granulocyte colony-stimulating factor (G-CSF) and modulates signaling from the G-CSF receptor. Leukemia, 14(7), 1284. https://doi.org/10.1038/sj.leu.2401822

Wells, J. A., & de Vos, A. M. (1996). Hematopoietic receptor complexes. Annual Review of Biochemistry, 65(1), 609–634. https://doi.org/10.1146/annurev.bi.65.070196.003141

Welte, K. A. R. L., Bonilla, M. A., Gillio, A. P., Boone, T. C., Potter, G. K., Gabrilove, J. L., & Souza, L. M. (1987). Recombinant human granulocyte colony-stimulating factor. Effects on hematopoiesis in normal and cyclophosphamide-treated primates. Journal of Experimental Medicine, 165(4), 941–948. https://doi.org/10.1084/jem.165.4.941

Welte, K., Gabrilove, J., Bronchud, M. H., Platzer, E., & Morstyn, G. (1996). Filgrastim (r-metHuG-CSF): the first 10 years. Blood, 88(6), 1907–1929.

Welte, K., Platzer, E., Lu, L., Gabrilove, J. L., Levi, E., Mertelsmann, R., & Moore, M. A. (1985). Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proceedings of the National Academy of Sciences of the USA, 82(5), 1526–1530. https://doi.org/10.1073/pnas.82.5.1526

Welte, K. (2012). Discovery of G-CSF and Early Clinical Studies. Dalam Molineux, G., Foote, M., & Arvedson, T. (Eds.). Twenty Years of G-CSF: Clinical and Nonclinical Discoveries. Milestone in Drug Therapy. Springer. https://doi.org/10.1007/978-3-0348-0218-5

Wong, G. G., Witek, J. S., Temple, P. A., Wilkens, K. M., Leary, A. C., Luxenberg, D. P., Jones, S. S., Brown, E. L., Kay, R. M., & Orr, E. C. (1985). Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science, 228(4701), 810–815. https://doi.org/10.1126/science.3923623

Zielinska, J., & Bialik, W. (2016). Recent changes on the biopharmaceutical market after the introduction of biosimilar G-CSF products. Oncology Clinical Practice, 12(4), 144–152. https://doi./org/10.5603/OCP.2016.0006

Akash, M. S. H., & Rehman, K. (2015). Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. Journal of Controlled Release, 209, 120–138.

Ashwell, G., & Morell, A. G. (1974). The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Advances in Enzymology and Related Areas of Molecular Biology, 41, 99–128.

Bailon, P., & Won, C. Y. (2009). PEG-modified biopharmaceuticals. Expert Opinion on Drug Delivery, 6(1), 1–16.

Berry, J. D. (2014). Introduction to therapeutic Fc-fusion proteins. Therapeutic Fc-Fusion Proteins, 217–232.

Booth, C., & Gaspar, H. B. (2009). Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics: Targets & Therapy, 3, 349.

Bukowski, R. M., Tendler, C., Cutler, D., Rose, E., Laughlin, M. M., & Statkevich, P. (2002). Treating cancer with PEG Intron: Pharmacokinetic profile and dosing guidelines for an improved interferon-alpha-2b formulation. Cancer: Interdisciplinary International Journal of the American Cancer Society, 95(2), 389–396.

Carter, P. J. (2011). Introduction to current and future protein therapeutics: a protein engineering perspective. Experimental Cell Research, 317(9), 1261–1269.

Chiran, D. A., Litscher, G., Weber, M., Ailioaie, L. M., Ailioaie, C., & Litscher, D. (2013). Intravenous laser blood irradiation increases efficacy of etanercept in selected subtypes of juvenile idiopathic arthritis: an innovative clinical research approach. Evidence-Based Complementary and Alternative Medicine, 168134.

Cumming, D. A. (1991). Glycosylation of recombinant protein therapeutics: Control and functional implications. Glycobiology, 1(2), 115–130.

Czajkowsky, D. M., Hu, J., Shao, Z., & Pleass, R. J. (2012). Fc-fusion proteins: New developments and future perspectives. EMBO Molecular Medicine, 4(10), 1015–1028.

De Lorenzo, C., Arciello, A., Cozzolino, R., Palmer, D. B., Laccetti, P., Piccoli, R., & D’Alessio, G. (2004). A fully human antitumor immuno RNase selective for ErbB-2-positive carcinomas. Cancer Research, 64(14), 4870–4874.

Dicker, M., & Strasser, R. (2015). Using glyco-engineering to produce therapeutic proteins. Expert Opinion on Biological Therapy, 15(10), 1501–1516.

Dozier, J., & Distefano, M. (2015). Site-specific PEGylation of therapeutic proteins. International Journal of Molecular Sciences, 16(10), 25831–25864.

Duttaroy, A., Kanakaraj, P., Osborn, B. L., Schneider, H., Pickeral, O. K., Chen, C., Zhang, G., Kaithamana, S., Singh, M., Schulingkamp, R., Crossan, D., Cock, J., Kaufman, T. E., Reavey, P., Carey-Barber, M., Krishnan, S. R., Garcia, A., Murphy, Siskind, K. K., … Blondel, O. (2005). Development of a long-acting insulin analog using albumin fusion technology. Diabetes, 54(1), 251–258.

Elliott, S., Lorenzini, T., Asher, S., Aoki, K., Brankow, D., Buck, L., Busse, L., Chang, D., Fuller, J., Grant, J., Hernday, N., Hokum, M., Hu, S., Knudten, A., Levin, N., Komorowski, R., Martin, F., Navarro, R., Osslund, T., … Egrie, J. (2003). Enhancement of therapeutic protein in vivo activities through glycoengineering. Nature Biotechnology, 21(4), 414.

Egrie, J. C., & Browne, J. K. (2002). Development and characterization of darbepoetin alfa. Oncology 16(10SUPP/11), 13–22.

Elsadek, B., & Kratz, F. (2012). Impact of albumin on drug delivery—New applications on the horizon. Journal of Controlled Release, 157(1), 4–28.

Fares, F. (2012). Half-life extension through O-glycosylation (hlm. 81–94). Wiley.

Fishburn, C. S. (2008). The pharmacology of PEGylation: Balancing PD with PK to generate novel therapeutics. Journal of Pharmaceutical Sciences, 97(10), 4167–4183.

Goh, J. B., & Ng, S. K. (2018). Impact of host cell line choice on glycan profile. Critical Reviews in Biotechnology, 38(6), 851–867.

He, X., Galpin, J. D., Tropak, M. B., Mahuran, D., Haselhorst, T., von Itzstein, M., Kolarich, D., Packer, N. H., Miao, Y., Jiang, L., Grabowski, G. A., Clarke, L. A., & Kermode, A. R. (2012). Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiology, 22(4), 492–503.

Hermanson, T., Bennett, C. L., & Macdougall, I. C. (2016). Peginesatide for the treatment of anemia due to chronic kidney disease–an unfulfilled promise. Expert Opinion on Drug Safety, 15(10), 1421–1426.

Huang, C., & Swanson, R. V. (2013). Peptide-Fc fusion therapeutics: Applications and challenges. Dalam Stefan R. Schmidt (Ed.), Fusion protein technologies for biopharmaceuticals: Applications and challenges (hlm. 123–142).

Ihara, Y., Inai, Y., Ikezaki, M., Matsui, I. S. L., Manabe, S., & Ito, Y. (2015). C-mannosylation: Modification on tryptophan in cellular proteins. Dalam Glycoscience: Biology and Medicine (hlm. 1091–1099).

Ikezawa, H. (2002). Glycosylphosphatidylinositol (GPI)-anchored proteins. Biological and Pharmaceutical Bulletin, 25(4), 409–417.

Jacobs, P. P., & Callewaert, N. (2009). N-glycosylation engineering of biopharmaceutical expression systems. Current Molecular Medicine, 9(7), 774–800.

Jazayeri, J. A., & Carroll, G. J. (2012). Half-life extension by fusion to the Fc region. Therapeutic proteins (hlm. 157–188).

Jelkmann, W. (2007). Control of erythropoietin gene expression and its use in medicine. Methods in Enzymology, 435, 179–197.

Jenkins N. (2007). Modifications of therapeutic proteins: challenges and prospects. Cytotechnology, 53(1–3), 121–125.

Jevševar, S., Kunstelj, M., & Porekar, V. G. (2010). PEGylation of therapeutic proteins. Biotechnology Journal: Healthcare Nutrition Technology, 5(1), 113–128.

Jevševar, S., & Kunstelj, M. (2012). Half-life extension through PEGylation. Therapeutic proteins: Strategies to modulate their plasma half-lives (hlm. 39–61).

Kang, J. S., DeLuca, P. P., & Lee, K. C. (2009). Emerging pegylated drugs. Expert Opinion on Emerging Drugs, 14(2), 363–380.

Kim, S. J., Park, Y., & Hong, H. J. (2005). Antibody engineering for the development of therapeutic antibodies. Molecules & Cells, 20(1).

Kinoshita, T., & Fujita, M. (2016). Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. Journal of Lipid Research, 57(1), 6–24.

Kontermann, R. E. (2016). Half-life extended biotherapeutics. Expert Opinion on Biological Therapy, 16(7), 903–915.

Kristic, J., & Lauc, G. (2017). Ubiquitous importance of protein glycosylation. Dalam High-throughput glycomics and glycoproteomics (hlm. 1–12). Humana Press.

Lai, T., Yang, Y., & Ng, S. (2013). Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals, 6(5), 579–603.

Lalonde, M. E., & Durocher, Y. (2017). Therapeutic glycoprotein production in mammalian cells. Journal of Biotechnology, 251, 128–140.

Leader, B., Baca, Q. J., & Golan, D. E. (2008). Protein therapeutics: a summary and pharmacological classification. Nature Reviews Drug Discovery, 7(1), 21.

Lee, H. S., Qi, Y., & Im, W. (2015). Effects of N-glycosylation on protein conformation and dynamics: Protein data bank analysis and molecular dynamics simulation study. Scientific Reports, 5, 8926.

Li, H., & d’Anjou, M. (2009). Pharmacological significance of glycosylation in therapeutic proteins. Current Opinion in Biotechnology, 20(6), 678–684.

Limkul, J., Iizuka, S., Sato, Y., Misaki, R., Ohashi, T., Ohashi, T., & Fujiyama, K. (2016). The production of human glucocerebrosidase in glyco-engineered N icotiana benthamiana plants. Plant Biotechnology Journal, 14(8), 1682–1694.

Lisowska, E., & Jaskiewicz, E. (2012). Protein glycosylation, an overview. eLS.

Macdougall, I. C. (2000, Juli). Novel erythropoiesis stimulating protein. Dalam Seminars in nephrology, 20(4), 375–381.

Matthews, J. E., Stewart, M. W., De Boever, E. H., Dobbins, R. L., Hodge, R. J., Walker, S. E., Holland, M. C., Bush, M. A., Albiglutide Study Group. (2008). Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism, 93(12), 4810–4817.

Mishra, P., Nayak, B., & Dey, R. K. (2016). PEGylation in anti-cancer therapy: An overview. Asian Journal Of Pharmaceutical Sciences, 11(3), 337–348.

Metzner, H. J., Weimer, T., & Schulte, S. (2012). Half-life extension by fusion to recombinant albumin. Therapeutic proteins: Strategies to modulate their plasma half-life. Wiley-VCH Verlag.

Molineux, G. (2004). The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta®). Current Pharmaceutical Design, 10(11), 1235–1244.

Ningrum, R. A., Herawati, N., & Wardiana, A. (2017). Development of higher molecular weight of recombinant human interferon alpha-2a by albumin fusion technology in methilotropic yeast Pichia pastoris. International Journal on Advanced Science, Engineering and Information Technology, 7(1), 8–14.

Osborn, B. L., Sekut, L., Corcoran, M., Poortman, C., Sturm, B., Chen, G., Mather, D., Hsiu, L. L., & Parry, T. J. (2002). Albutropin: a growth hormone–albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys. European Journal of Pharmacology, 456(1–3), 149–158.

Partridge, E. A., Le Roy, C., Di Guglielmo, G. M., Pawling, J., Cheung, P., Granovsky, M., Nabi, I. R., Wrana, J. L., & Dennis, J. W. (2004). Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science, 306(5693), 120–124.

Paulick, M. G., & Bertozzi, C. R. (2008). The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry, 47(27), 6991–7000.

Powell, J., & Gurk-Turner, C. (2002, July). Darbepoetin alfa (aranesp). Dalam Baylor University Medical Center Proceedings, 15(3), 332–335. Taylor & Francis.

Reddy, K. R., Modi, M. W., & Pedder, S. (2002). Use of peginterferon alfa-2a (40 KD)(Pegasys®) for the treatment of hepatitis C. Advanced Drug Delivery Reviews, 54(4), 571–586.

Roberts, M. J., Bentley, M. D., & Harris, J. M. (2012). Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 64, 116–127.

Rogers, B., Dong, D., Li, Z., & Li, Z. (2015). Recombinant human serum albumin fusion proteins and novel applications in drug delivery and therapy. Current Pharmaceutical design, 21(14), 1899–1907.

Santos, J. H. P. M., Torres-Obreque, K. M., Meneguetti, G. P., Amaro, B. P., & Rangel-Yagui, C. O. (2018). Protein PEGylation for the design of biobetters: from reaction to purification processes. Brazilian Journal of Pharmaceutical Sciences, 54(SPE).

Santoso, A. (2014). Expression of modified recombinant human erythropoietin in cho-k1 cells and its in vitro proliferation assay in TF-1 CELLS. Indonesian Journal of Pharmacy, 25(1), 9.

Sharma, T., Velmurugan, N., Patel, P., Chon, B. H., & Sangwai, J. S. (2015). Use of oil-in-water pickering emulsion stabilized by nanoparticles in combination with polymer flood for enhanced oil recovery. Petroleum Science and Technology, 33(17–18), 1595–1604.

Schmidt, S. R. (2009). Fusion-proteins as biopharmaceuticals–applications and challenges. Curr Opin Drug Discov Devel, 12(2), 284–295.

Schmidt, S. R. (Ed.). (2013). Fusion protein technologies for biopharmaceuticals: Applications and challenges. John Wiley & Sons.

Schmidt, S. R. (2014). Fusion protein with toxic activity. Therapeutic Fc-fusion proteins (hlm. 253–265).

Sinclair, A. M., & Elliott, S. (2005). Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. Journal of Pharmaceutical Sciences, 94(8), 1626–1635.

Solá, R. J., & Griebenow, K. A. I. (2009). Effects of glycosylation on the stability of protein pharmaceuticals. Journal of Pharmaceutical Sciences, 98(4), 1223–1245.

Strohl, W. R. (2015). Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs, 29(4), 215–239.

Sun, C., Wirsching, P., & Janda, K. D. (2003). Enabling ScFvs as multi-drug carriers: a dendritic approach. Bioorganic & Medicinal Chemistry, 11(8), 1761–1768.

Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombetta, J., Sur, M., & Zhang, F. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nature Biotechnology, 33(1), 102.

Turecek, P. L., Bossard, M. J., Schoetens, F., & Ivens, I. A. (2016). PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. Journal of Pharmaceutical Sciences, 105(2), 460–475.

Vasudevan, D., & Haltiwanger, R. S. (2014). Novel roles for O-linked glycans in protein folding. Glycoconjugate Journal, 31(6–7), 417–426.

Volovat, C., Gladkov, O. A., Bondarenko, I. M., Barash, S., Buchner, A., Bias, P., Adar, L., & Avisar, N. (2014). Efficacy and safety of balugrastim compared with pegfilgrastim in patients with breast cancer receiving chemotherapy. Clinical Breast Cancer, 14(2), 101–108.

Weimer, T., Metzner, H. J., & Schulte, S. (2013). Recombinant albumin fusion proteins. Dalam Stefan R. Schmidt (ed.), Fusion protein technologies for biopharmaceuticals: Applications and challenges (hlm. 163–178). John Wiley & Sons, Inc.

Woo, J. H., & Frankel, A. (2013). Classic immunotoxins with plant or microbial toxins. Dalam Stefan R. Schmidt (ed.), Fusion protein technologies for biopharmaceuticals: Applications and challenges (hlm. 271–293). John Wiley & Sons, Inc.

Wynn, T. T., & Gumuscu, B. (2016). Potential role of a new PEGylated recombinant factor VIII for hemophilia A. Journal of Blood Medicine, 7, 121.

Yao, Z., Dai, W., Perry, J., Brechbiel, M. W., & Sung, C. (2004). Effect of albumin fusion on the biodistribution of interleukin-2. Cancer Immunology, Immunotherapy, 53(5), 404–410.

Yuliawati, Soejoedono, R. D., & Fuad, A. M. (2014, Juni). Construction and expression of immunotoxin anti EGFRvIII scFv-HPR conjugate in Pichia pastoris as a targeted drug candidate for cancer therapy. ANNALES BOGORIENSES, 18(1), 13–23.

Zeuzem, S., Sulkowski, M. S., Lawitz, E. J., Rustgi, V. K., Rodriguez–Torres, M., Bacon, B. R., Grigorescu, M, Tice, A. D., Lurie, Y., Cianciara, J, Muir, A. J., Cronin, P. W., Pulkstenis, E., Subramanian, G. M., McHutchison, J. G., & ACHIEVE-1 Study Team. (2010). Albinterferon Alfa-2b was not inferior to pegylated interferon-a in a randomized trial of patients with chronic hepatitis C virus genotype 1. Gastroenterology, 139(4), 1257–1266.

Zhang, L., Wang, L., Meng, Z., Gan, H., Gu, R., Wu, Z., Gao, L., Zhu, X., Sun, W., Li, J., Zheng, Y., & Dou G. (2014). A novel exendin-4 human serum albumin fusion protein, E2HSA, with an extended half-life and good glucoregulatory effect in healthy rhesus monkeys. Biochemical and Biophysical Research Communications, 445(2), 511–516.

Zhao, H. L., Yao, X. Q., Xue, C., Wang, Y., Xiong, X. H., & Liu, Z. M. (2008). Increasing the homogeneity, stability and activity of human serum albumin and interferon-a2b fusion protein by linker engineering. Protein Expression and Purification, 61(1), 73–77.

Abbasi, E., Aval, S. F., Akbarzadeh, A., Milani, M., Nasrabadi, H. T., Joo, S. W., Hanifehpour, Y., Nejati-Koshki, K., & Pashaei-Asl, R. (2014). Dendrimers: Synthesis, applications, and properties. Nanoscale Research Letters, 9(1), 247. https://doi.org/10.1186/1556-276X-9-247

Agustiyanti, D. F., Ferdina, M., Pratiwi, R. D., Dewi, K. S., Fuad., A. M., & Mustofa, A. Z. (2019). Enkapsulasi hepatitis B core antigen (HbcAg). Laporan teknis prioritas nasional obat dan kesehatan penyediaan sumber bahan baku obat berbasis protein rekombinan dan obat herbal terstandar (OHT) penanganan penyakit menular dan tidak menular. Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia.

Akers, M. J. (2006). Special challenges in production of biopharmaceutical dosage forms. BioProcess Int, 4, 36–43.

Albarran, B., Hoffman, A. S., & Stayton, P. S. (2011). Efficient intracellular delivery of a pro-apoptotic peptide with a pH-responsive carrier. Reactive and Functional Polymers, 71(3), 261–265. https://doi.org/10.1016/j.reactfunctpolym.2010.09.008

Ansel, H. C. (2005). Pengantar bentuk sediaan farmasi (Terj: Farida Ibrahim) (hlm. 156–162).

Arakawa, T., & Philo, J. S. (2013). Biophysical and biochemical analysis of recombinant proteins. Dalam Pharmaceutical biotechnology (hlm. 19–45). Springer. https://doi.org/10.1007/978-1-4614-6486-0_2

Arefieg, R. J. (2016). U.S. Patent No. 9,358,334. U.S. Patent and Trademark Office.

Barnett, A. H. (2004). Exubera inhaled insulin: a review. International Journal of Clinical Practice, 58(4), 394–401. https://doi.org/10.1111/j.1368-5031.2004.00178.x

Carpenter, G., & Cohen, S. (1990). Epidermal growth factor. Journal of Biological Chemistry, 265(14), 7709–7712.

Chaurasia, G. (2016). A review on pharmaceutical preformulation studies in formulation and development of new drug molecules. International Journal of Pharmaceutical Sciences and Research, 7(6), 2313. http://dx.doi.org/10.13040/IJPSR.0975-8232.7 (6).2313-20

Chittasupho, C., Xie, S. X., Baoum, A., Yakovleva, T., Siahaan, T. J., & Berkland, C. J. (2009). ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. European Journal of Pharmaceutical Sciences, 37(2), 141–150. https://doi.org/10.1016/j.ejps.2009.02.008

Crommelin, D. J. (2013). Formulation of biotech products, including biopharmaceutical considerations. Dalam Pharmaceutical biotechnology (hlm. 69–99). Springer. https://doi.org/10.1007/978-1-4614-6486-0_4

Das, A. T., Harwig, A., & Berkhout, B. (2011). The HIV-1 Tat protein has a versatile role in activating viral transcription. Journal of Virology, 85(18), 9506–9516. https://doi.org/10.1128/JVI.00650-11

Electronic medicines compendium. (t.t.). Neupogen singleject 30 MU (0,6mg/ml). Diakses 11 April 2018 dari https://www.medicines.org.uk/emc/product/608/smpc

Florens, N., & Juillard, L. (2017). Large middle molecule and albumin removal: Why should we not rest on our laurels?. Dalam Expanded Hemodialysis, 191, 178–187. Karger Publishers. https://doi.org/10.1159/000479266

Frokjaer, S., & Otzen, D. E. (2005). Protein drug stability: a formulation challenge. Nature Reviews Drug Discovery, 4(4), 298–306. https://doi.org/10.1038/nrd1695

Goodsell, D. S. (2003). The molecular perspective: Epidermal growth factor. The Oncologist, 8(5), 496–497. https://doi.org/10.1634/theoncologist.8-5-496

Guideline, I. H. T. (1995). Technical requirements for registration of pharmaceuticals for human use. Q5C.

Guideline, I. H. T. (2003). Stability testing of new drug substances and products. Q1A (R2), Current Step, 4, 1–24.

Heinemann, L., & Hompesch, M. (2014). Biosimilar insulins: Basic considerations. Journal of Diabetes Science and Technology, 8(1), 6–13. https://doi.org/10.1177%2F1932296813516958

Kamerzell, T. J., Esfandiary, R., Joshi, S. B., Middaugh, C. R., & Volkin, D. B. (2011). Protein-excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development. Advanced Drug Delivery Reviews, 63(13), 1118–1159. https://doi.org/10.1016/j.addr.2011.07.006

Ke, C. J., Su, T. Y., Chen, H. L., Liu, H. L., Chiang, W. L., Chu, P. C., Xia, Y., & Sung, H. W. (2011). Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angewandte Chemie, 123(35), 8236–8239. https://doi.org/10.1002/ange.201102852

Kircik, L. H. (2011). Microsphere technology: Hype or help? The Journal of Clinical and Aesthetic Dermatology, 4(5), 27.

Konduri, K., Gallant, J. N., Chae, Y. K., Giles, F. J., Gitlitz, B. J., Gowen, K., Ichihara, E., Owonikoko, T. K., Peddareddigari, V., Suresh S. Ramalingam, S. S., Reddy, S. K., Eaby-Sandy, B., Vavalà, T., Whiteley, A., Chen, H., Yan, J., Sheehan, J.H., Meiler, … Lovly, C. M. (2016). EGFR fusions as novel therapeutic targets in lung cancer. Cancer Discovery, 6(6), 601–611. https://doi.org/10.1158/2159-8290.CD-16-0075

Kothamasu, P., Kanumur, H., Ravur, N., Maddu, C., Parasuramrajam, R., & Thangavel, S. (2012). Nanocapsules: the weapons for novel drug delivery systems. BioImpacts: BI, 2(2), 71. https://doi.org/10.5681/bi.2012.011

Krishnan, S., Chi, E. Y., Webb, J. N., Chang, B. S., Shan, D., Goldenberg, M., Manning, M. C., Randolph, T. W., & Carpenter, J. F. (2002). Aggregation of granulocyte colony stimulating factor under physiological conditions: Characterization and thermodynamic inhibition. Biochemistry, 41(20), 6422–6431. https://doi.org/10.1021/bi012006m

Kusharyoto, W., Handayani, I., Sari, M., & Fuad, A. M. (2014, Desember). Preparation of an scFv-based immunoliposome specific towards transferrin receptor. Dalam Annales Bogorienses, 18(2), 35–44. http://dx.doi.org/10.14203/ann.bogor.2014.v18.n2.35-44

Lagassé, H. D., Alexaki, A., Simhadri, V. L., Katagiri, N. H., Jankowski, W., Sauna, Z. E., & Kimchi-Sarfaty, C. (2017). Recent advances in (therapeutic protein) drug development. F1000Research, 6. https://doi.org/10.12688/f1000research.9970.1

Langer, R., & Folkman, J. (1976). Polymers for the sustained release of proteins and other macromolecules. Nature, 263(5580), 797–800. https://doi.org/10.1038/263797a0

Lehninger, A. L. (1982). Dasar-dasar biokimia jilid 1. Erlangga.

Lewis, A. L., & Illum, L. (2010). Formulation strategies for sustained release of proteins. Therapeutic Delivery, 1(3), 457–479. https://doi.org/10.4155/tde.10.17

Lewis, A. L., & Richard, J. (2015). Challenges in the delivery of peptide drugs: an industry perspective. Therapeutic Delivery, 6(2), 149–163. https://doi.org/10.4155/tde.14.111

Lipiäinen, T., Peltoniemi, M., Sarkhel, S., Yrjönen, T., Vuorela, H., Urtti, A., & Juppo, A. (2015). Formulation and stability of cytokine therapeutics. Journal of Pharmaceutical Sciences, 104(2), 307–326. https://doi.org/10.1002/jps.24243

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular cell biology. WH Freeman.

Lohcharoenkal, W., Wang, L., Chen, Y. C., & Rojanasakul, Y. (2014). Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Research International. https://doi.org/10.1155/2014/180549

Lopes, M., Simões, S., Veiga, F., Seiça, R., & Ribeiro, A. (2015). Why most oral insulin formulations do not reach clinical trials. Therapeutic Delivery, 6(8), 973–987. https://doi.org/10.4155/TDE.15.47

Mitragotri, S., Burke, P. A., & Langer, R. (2014). Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nature Reviews Drug Discovery, 13(9), 655–672. https://doi.org/10.1038/nrd4363

Muheem, A., Shakeel, F., Jahangir, M. A., Anwar, M., Mallick, N., Jain, G. K., Warsi, M. H., & Ahmad, F. J. (2016). A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharmaceutical Journal, 24(4), 413–428. https://doi.org/10.1016/j.jsps.2014.06.004

Niazi, S. K. (2016). Biosimilars and interchangeable biologics: Tactical elements. CRC Press.

Ohtake, S., & Wang, W. (2013). Protein and peptide formulation development. Pharmaceutical sciences encyclopedia: Drug discovery, development, and manufacturing (hlm. 1–44). https://doi.org/10.1002/9780470571224.pse510

Patel, A., Cholkar, K., & Mitra, A. K. (2014). Recent developments in protein and peptide parenteral delivery approaches. Therapeutic Delivery, 5(3), 337–365. https://doi.org/10.4155/tde.14.5

Pelton, J. T., & McLean, L. R. (2000). Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry, 277(2), 167–176. https://doi.org/10.1006/abio.1999.4320

Pillai, S. A., Chobisa, D., Urimi, D., & Ravindra, N. (2016). Pharmaceutical glass interactions: a review of possibilities. Journal of Pharmaceutical Sciences and Research, 8(2), 103.

Pramod, K., Tahir, M. A., Charoo, N. A., Ansari, S. H., & Ali, J. (2016). Pharmaceutical product development: A quality by design approach. International Journal of Pharmaceutical Investigation, 6(3), 129. https://doi.org/10.4103/2230-973X.187350

Pratiwi, R. D., Zanjabilla, S., Rosyidi, V. A., Yudasari, N., Fuad, A. M. (2018). Expression of human epidermal growth factor in Escherichia coli BL21(DE3) and its nanoformulation for gastric ulcer therapy. Final Report Indonesia Toray Science Foundation 2017. Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia.

Pratiwi, R. D., Agustiyanti, D. F., Dewi, T. I. T., Herlina, N., Dewi, K. S., Yuliawati, Y., Aminah, A., & Fuad, A. M. (2020). Bioassay of recombinant human granulocyte colony stimulating factor (rhG-CSF) for neutropenia treatment in male sprague dawley rats. Molecular and Cellular Biomedical Sciences, 4(1), 10–8. https://doi.org/10.21705/mcbs.v4i1.81

Ramos-Cabrer, P., & Campos, F. (2013). Liposomes and nanotechnology in drug development: Focus on neurological targets. International Journal of Nanomedicine, 8, 951. https://dx.doi.org/10.2147/IJN.S30721

Ray, M., Lee, Y. W., Scaletti, F., Yu, R., & Rotello, V. M. (2017). Intracellular delivery of proteins by nanocarriers. Nanomedicine, 12(8), 941–952. https://doi.org/10.2217/nnm-2016-0393

Santoso, A., Fuad, A. M., Herawati, N., Wardiana, A., Rubiyana, Y,. Ningrum, R.A., Wisnuwardhani, P. H., Wijaya, S.K., Kusumawati, A., Septisetyani, E. P., Yuliawati, Dewi, K. S., Agustiyanti, D. F., Aminah, Y., & Pratiwi, R. D. (2017). Pengembangan produk obat biosimilar human erythropoietin (hEPO), human granulocyte colony stimulating factor (hG-CSF) dan insulin. Laporan kegiatan unggulan LIPI tahun 2017. Pusat Penelitian Bioteknologi, Lembaga Ilmu Pengetahuan Indonesia.

Sari, E., Tunc-Sarisozen, Y., Mutlu, H., Shahbazi, R., Ucar, G., & Ulubayram, K. (2015). ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress. Journal of Microencapsulation, 32(7), 687–698. https://doi.org/10.3109/02652048.2015.1073384

Sha, H., Li, R., Bian, X., Liu, Q., Xie, C., Xin, X., Kong, W., Qian, X., Jiang, X., Hu, W., & Liu, B. (2015). A tumor-penetrating recombinant protein anti-EGFR-iRGD enhance efficacy of paclitaxel in 3D multicellular spheroids and gastric cancer in vivo. European Journal of Pharmaceutical Sciences, 77, 60–72. https://doi.org/10.1016/j.ejps.2015.05.020

Shire, S. J., Shahrokh, Z., & Liu, J. U. N. (2004). Challenges in the development of high protein concentration formulations. Journal of Pharmaceutical Sciences, 93(6), 1390–1402. https://doi.org/10.1002/jps.20079

Stolnik, S., & Shakesheff, K. (2009). Formulations for delivery of therapeutic proteins. Biotechnology Letters, 31(1), 1–11. https://doi.org/10.1007/s10529-008-9834-y

Tibbitts, J., Canter, D., Graff, R., Smith, A., & Khawli, L. A. (2016, Februari). Key factors influencing ADME properties of therapeutic proteins: a need for ADME characterization in drug discovery and development. MAbs, 8(2), 229–245. Taylor & Francis. https://doi.org/10.1080/19420862.2015.1115937

Torchilin, V. (2008). Intracellular delivery of protein and peptide therapeutics. Drug Discovery Today: Technologies, 5(2–3), e95–e103. https://doi.org/10.1016/j.ddtec.2009.01.002

Turner, P. V., Brabb, T., Pekow, C., & Vasbinder, M. A. (2011). Administration of substances to laboratory animals: Routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science, 50(5), 600–613.

University of Alaska-Fairbanks. (t.t.). Fall web projects—protein structures. http://ffden-2.phys.uaf.edu/211.fall2000.web.projects/Danie lle%20Arnold/Intoduction.html

Wang, W., Ignatius, A. A., & Thakkar, S. V. (2014). Impact of residual impurities and contaminants on protein stability. Journal of Pharmaceutical Sciences, 103(5), 1315–1330. https://doi.org/10.1002/jps.23931

World Health Organization. (2009). Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. WHO Technical Report Series, 953, 87–123.

Yoshida, T., Lai, T. C., Kwon, G. S., & Sako, K. (2013). pH-and ion-sensitive polymers for drug delivery. Expert Opinion on Drug Delivery, 10(11), 1497–1513. https://doi.org/10.1517/17425247.2013.821978

Yuliawati, Y., Soejoedono, R. D., & Fuad, A. M. (2014, Juni). Construction and expression of immunotoxin anti EGFRvIII scFv-HPR conjugate in Pichia pastoris as a targeted drug candidate for cancer therapy. ANNALES BOGORIENSES, 18(1), 13–23. http://dx.doi.org/10.14203/ann.bogor.2014.v18.n1.13-23

Alfandry, R. (2016). How to choose the perfect vector for your molecular biology experiment. Genome Compiler. F. http://www.genomecompiler.com/how-to-choose-the-perfect-vector/

Baker, J. R., Jr., Bielinska, A. U., & Kukowska-Latallo, J. F. (2004). Dendrimer-mediated cell transfection in vitro. Methods Mol Biol., 245, 67–82. https://doi.org/10.1385/1-59259-649-5:67

Berghout, A. (2011). Clinical programs in the development of similar biotherapeutic products: Rationale and general principles. Biologicals, 39(5), 293–296. https://doi.org/10.1016/j.biologicals.2011.06.024

Castro, P. M., Hayter, P. M., Ison, A. P., & Bull, A. T. (1992). Application of a statistical design to the optimization of culture medium for recombinant interferon-gamma production by Chinese hamster ovary cells. Appl Microbiol Biotechnol, 38(1), 84. https://doi.org/10.1007/BF00169424

Cheetham, J. C., Smith, D. M., Aoki, K. H., Stevenson, J. L., Hoeffel, T. J., Syed, R. S., Egrie, J., & Harvey, T. S. (1998). NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nature Structural Biology, 5(10), 861–866. https://doi.org/10.1038/2302

Deechongkit, S., Aoki, K. H., Park, S. S., & Kerwin, B. A. (2006). Biophysical comparability of the same protein from different manufacturers: A case study using epoetin alfa from Epogen® and Eprex. J Pharm Sci, 95(9), 1931–1943. https://doi.org/10.1002/jps.20649

Dhanasekharan, K., Berdugo, C., Liu, X., Richey, C., Segu, Z., Vinci, V., Calabrese, D., LeFourn, V., & Girod, P. A. (2015, 14 April). Rapid development and scale-up of biosimilar trastuzumab: A case study of integrated cell line and process development. BioProcess International, 13.

Durocher, Y., & Butler, M. (2009). Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol, 20(6), 700–707. https://doi.org/10.1016/j.copbio.2009.10.008

Eaker, S., Abraham, E., Allickson, J., Brieva, T. A., Baksh, D., Heathman, T. R. J., Mistry, B., & Zhang, N. (2017). Bioreactors for cell therapies: Current status and future advances. Cytotherapy (Oxford, England), 19(1), 9–18. https://doi.org/10.1016/j.jcyt.2016.09.011

Estes, S., & Melville, M. (2014). Mammalian cell line developments in speed and efficiency. Adv Biochem Eng Biotechnol, 139, 11–33. https://doi.org/10.1007/10_2013_260

Falconer, R. J., Jackson-Matthews, D., & Mahler, S. M. (2011). Analytical strategies for assessing comparability of biosimilars. Journal of Chemical Technology and Biotechnology (1986), 86(7), 915–922. https://doi.org/10.1002/jctb.2629

FDA. (2016). Clinical pharmacology data to support a demonstration of biosimilarity to a reference product guidance for industry. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM397017.pdf

Fletcher, T. (2005). Designing culture media for recombinant protein production a rational approach.

Froger, A., & Hall, J. E. (2007). Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp, (6), 253. https://doi.org/10.3791/253

Gallagher, C., & Kelly, P. S. (2017). Selection of high-producing clones using FACS for CHO cell line development. Methods Mol. Biol., 1603, 143–152. https://doi.org/ 10.1007/978-1-4939-6972-2_9

Hammett, K., Kuchibhatla, J., Hunt, C., Holdread, S., & Brooks, J. W. (2007). Cell technology for cell products vol. 3 (hlm. 683–691). Springer Netherlands.

Herawati, N., Wardiana, A., & Ningrum, R. A. (2015). Expression of no affinity tagged recombinant human interferon alpha-2a in methylotrophic yeast Pichia pastoris. Annales Bogorienses, 19(2), 57–62.

ICH. (2004). Comparability of biotechnological/biological products subject to changes in their manufacturing process Q5E. International conference on harmonisation of technical requirements for registration of pharmaceutical for human use. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5E/Step4 /Q5E_Guideline.pdf

ICH. (2009). Pharmaceutical Development Q8(R2). International conference on harmonisation of technical requirements for registration of pharmaceutical for human use, 8. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/St ep4/Q8_R2_Guideline.pdf.

ICH. (2012). Guidance for industry S6 addendum to preclinical safety evaluation of biotechnology- derived pharmaceuticals. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidanc es/UCM194490.pdf

Jung, S. K., Lee, K. H., Jeon, J. W., Lee, J. W., Kwon, B. O., Kim, Y. J., Bae, J. S., Kim, D-. I., Lee, S. Y., & Chang, S. J. (2014). Physicochemical characterization of Remsima. MAbs, 6(5), 1163–1177. https://doi.org/10.4161/mabs.32221

Kanda, Y., Imai-Nishiya, H., Kuni-Kamochi, R., Mori, K., Inoue, M., Kitajima-Miyama, K., Okazaki, A., Lida, S., Shitara, K., & Satoh, M. (2007). Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol, 130(3), 300–310. https://doi.org/10.1016/j.jbiotec.2007.04.025

Keijzer, T., Kakes, E., & van Halsema, E. (2011). Advances in the design of bioreactor systems. Innovation in Pharmaceutical Technology, 60–64. http://www.iptonline.com/articles/public/advancesinthedesignofbioreactorsystems.pdf

Klaus, W., Gsell, B., Labhardt, A. M., Wipf, B., & Senn, H. (1997). The three-dimensional high resolution structure of human interferon a-2a determined by heteronuclear NMR spectroscopy in solution. Journal of Molecular Biology, 274(4), 661–675. https://doi.org/10.1006/jmbi.1997.1396

Kontoravdi, C., Samsatli, N. J., & Shah, N. (2013). Development and design of bio-pharmaceutical processes. Current Opinion in Chemical Engineering, 2(4), 435–441. https://doi.org/10.1016/j.coche.2013.09.007

Lai, T., Yang, Y., & Ng, S. K. (2013). Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel, Switzerland), 6(5), 579–603. https://doi.org/10.3390/ph6050579

Lee, C. L. C., Sauerwald, T., Kelly, T., & Moore, G. (2006). High-throughput screening of cell lines expressing monoclonal antibodies development of an immununoprecipitation-based method by.

Li, F., Vijayasankaran, N., Shen, A. Y., Kiss, R., & Amanullah, A. (2010). Cell culture processes for monoclonal antibody production. MAbs, 2(5), 466–479. https://doi.org/10.4161/mabs.2.5.12720

Li, H., Sethuraman, N., Stadheim, T. A., Zha, D., Prinz, B., Ballew, N., Bobrowicz, P., Choi, B.-K., Cook, W. J., Cukan, M., Huoston-Cummings, N. R., Davidson, R., Gong, B., Hamilton, S. R., Hoopes, J. P., Jiang, Y., Kim, N., Mansfield, R., Nett, … Gerngross, T. U. (2006). Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol, 24(2), 210–215. https://doi.org/10.1038/nbt1178

Liu, H. F., Ma, J., Winter, C., & Bayer, R. (2010). Recovery and purification process development for monoclonal antibody production. MAbs, 2(5), 480–499. https://doi.org/10.4161/mabs.2.5.12645

Mahler, S. M., Wardiana, A., Jones, M. L., Bakker, C. J., Graham, G. G., & Howard, C. B. (2016). Biosimilars approved for treatment of inflammatory rheumatological diseases. Int . J . Rheum . Dis. 19(11), 1043–1048. https://doi.org/10.1111/1756-185X.13037

Mandenius, C. F. (2016). Bioreactors: Desain, operation and novel applications. Wiley.

Mori, K., Kuni-Kamochi, R., Yamane-Ohnuki, N., Wakitani, M., Yamano, K., Imai, H., Kanda, Y., Niwa, R., Lida, S., Uchida, K., Shitara, K., & Satoh, M. (2004). Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng, 88(7), 901–908. https://doi.org/10.1002/bit.20326

Morita, T., & Takegawa, K. (2004). A simple and efficient procedure for transformation of Schizosaccharomyces pombe. Yeast, 21(8), 613–617. https://doi.org/10.1002/yea.1104

Pais-Chanfrau, J., & Trujillo-Toledo, L. (2016). Optimization of culture medium for large-scale production of heterologous proteins in Pichia pastoris to be used in nanoscience and other biotechnological fields. Biology and Medicine, 8(3). https://doi.org/10.4172/0974-8369.1000279

Park, S. S., Park, J., Ko, J., Chen, L., Meriage, D., Crouse-Zeineddini, J., Wong, W., & Kerwin, B. A. (2009). Biochemical assessment of Erythropoietin products from Asia versus US Epoetin alfa manufactured by Amgen. J Pharm Sci, 98(5), 1688–1699. https://doi.org/10.1002/jps.21546

Potter, H. (2003). Transfection by electroporation. Current Protocols in Molecular Biology, 62(1), 931–936. https://doi.org/10.1002/0471142727.mb0903s62

Roest, S., Kapps-Fouthier, S., Klopp, J., Rieffel, S., Gerhartz, B., & Shrestha, B. (2016). Transfection of insect cell in suspension for efficient baculovirus generation. MethodsX, 3, 371–377. https://doi.org/10.1016/j.mex.2016.04.011.

Roush, D. J., & Lu, Y. (2008). Advances in primary recovery: Centrifugation and membrane technology. Biotechnol Prog, 24(3), 488–495. https://doi.org/10.1021/bp070414x

Rubiyana, Y., Soejoedono, R. D., & Santoso, A. (2020). Enhancement of transient erythropoietin protein expression by valproic acid in CHO-K1 suspension adapted cells. Indonesian Journal of Biotechnology, 25(1), 28–32. https://dx.doi.org/10.22146/ijbiotech.52621

Rüdt, M., Briskot, T., & Hubbuch, J. (2017). Advances in downstream processing of biologics-Spectroscopy: An emerging process analytical technology. Journal of Chromatography A, 1490, 2–9. https://doi.org/10.1016/j.chroma.2016.11.010

Saba, J. A., Kunkel, J. P., Jan, D. C. H., Ens, W. E., Standing, K. G., Butler, M., Jamieson, J. C., & Perreault, H. (2002). A study of immunoglobulin G glycosylation in monoclonal and polyclonal species by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem, 305(1), 16–31. https://doi.org/10.1006/abio.2002.5651

Sauerwald, T. M., Figueroa, B., Hardwick, J. M., Oyler, G. A., & Betenbaugh, M. J. (2006). Combining caspase and mitochondrial dysfunction inhibitors of apoptosis to limit cell death in mammalian cell cultures. Biotechnol Bioeng, 94(2), 362–372. https://doi.org/10.1002/bit.20874

Septisetyani, E., Rubiyana, Y., Wisnuwardhani, P., Wardiana, A., & Santoso, A. (2012). Expression of recombinant human erythropoietin with glycosylation modification in hek293t cells. Indonesian Journal of Pharmacy, 23(3), 177–182.

Sommerfeld, S., & Strube, J. (2005). Challenges in biotechnology production—generic processes and process optimization for monoclonal antibodies. Chemical Engineering and Processing, 44(10), 1123–1137. https://doi.org/10.1016/j.cep.2005.03.006

Sörgel, F., Schwebig, A., Holzmann, J., Prasch, S., Singh, P., & Kinzig, M. (2015). Comparability of biosimilar filgrastim with originator filgrastim: Protein characterization, pharmacodynamics, and pharmacokinetics. BioDrugs, 29(2), 123–131. https://doi.org/10.1007/s40259-015-0124-7

Walsh G. (2013). Biopharmaceuticals approval trends in 2013. Biopharm Int., 26(4), 54–56.

Wardiana, A., & Ningrum, R. A. (2016). The emergence of Biosimilars in Indonesia: guidelines, challenges and prospects. Annales Bogorienses, 20(2), 37–46.

Whitmore, L., & Wallace, B. A. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 89(5), 392–400. https://doi.org/10.1002/bip.20853

Wilm, M., Shevchenko, A., Houthaeve, T., Breit, S., Schweigerer, L., Fotsis, T., & Mann, M. (1996). Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature, 379(6564), 466–469. https://doi.org/10.1038/379466a0

Wisnuwardhani, P., Septisetyani, E., & Santoso, A. (2017). Sequential adaptation in mammalian CHO- K1 cells producing human erythropoietin. Annales Bogorienses, 21(1), 15–20.

Balakrishnan, V. S., & Wagstaff, A. (2015). Getting serious about biosimilars. Cancer World. https://cancerworld.net/wp-content/uploads/2015/12/CW_69-cutting_edge.pdf

Barry, F. (2014, 1 Agustus). Where are tomorrow’s biosimilar hotspots? Biopharma Reporter. https://www.biopharma-reporter.com/Article/2014/07/30/Where-are-tomorrow-s-biosimilar-hotspots

Biosim Exchange. (2018). Summary of biosimilars research from EULAR 2018. Biosimilars – a major focus at 2017 ACR and EULAR annual meetings. https://biosim.jointhealth.org/research

Biosimilar development: the incentives and challenges. (2017, 28 Februari). Pharmaceutical Technology.Com. https://www.pharmaceutical-technology.com/comment/commentwhat-are-the-incentives-and-challenges-to-biosimilar-development-5751024/

Blackstone, E. A., & Joseph, P. F. (2013). The economics of biosimilars. American Health & Drug Benefits, 6(8), 469.

Brennan, Z. (2018). Top-selling drugs in 2018: Biosimilar competition is FDA approved but not marketed. Regulatory Focus. https://www.raps.org/news-and-articles/news-articles/2018/2/top-selling-drugs-in-2018-biosimilar-competition

Calo-Fernández, B., & Martínez-Hurtado, J. L. (2012). Biosimilars: Company strategies to capture value from the biologics market. Pharmaceuticals, 5(12), 1393–1408.

Camacho, L. H., Frost, C. P., Abella, E., Morrow, P. K., & Whittaker, S. (2014). Biosimilars 101: Considerations for US oncologists in clinical practice. Cancer medicine, 3(4), 889–899.

Cassels, A. (2017, 9 Januari). Why biosimilars should be interchangeable with biologics. The Pharmaceutical Journal. https://www.pharmaceutical-journal.com/opinion/insight/why-biosimilars-should-be-interchangeable-with-biologics/20202121.article

Cécile, R., Julie, D., Olivier, C., Dan, I., Guerric, R., & Mondher, T. (2017). Key drivers for market penetration of biosimilars in Europe. Journal of Market Access & Health Policy, 5 (1), 1–15.

Crespi-Lofton, J., & Skelton, J. B. (2017). The growing role of biologics and biosimilars in the United States: Perspectives from the APhA biologics and biosimilars stakeholder conference. Journal of the American Pharmacists Association, 57, e15–e27.

Frazee, S. G., Garavaglia, S., Houts, J., & Miller, S. (2013). Express script research report. Ten-year potential savings from biosimilars in California. https://patentdocs.typepad.com/files/ten-year-potential-savings-from-biosimilars-in-california.pdf

Grabowski, H. G., Ridley, D. B., & Schulman, K. A. (2007). Entry and competition in generic biologics. Managerial and decision economics. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=992479

IMS Institute for Healthcare Informatics. (2016). Delivering on the potential of biosimilar medicines. The role of functioning competitive markets. http://www.imshealth.com/files/web/IMSH%20Institute/Healthcare%20Briefs/Documents/IMS_Institute_Biosimilar_Brief_March_2016.pdf

IMS Health. (2017). The global use of medicines: Outlook through 2017. https://www.imshealth.com/files/web/IMSH%20Institute/Reports/The_Global_Use_of_Medicines_2017/global%20use%20of%20med%202017%20right6%20Biologics_Market.pdf

Jain, N., Smith, S. W., Ghone, S., & Tomczuk, B. (2015). Current ADC linker chemistry. Pharmaceutical Research, 32(11), 3526–3540.

Lybecker, K. M (2016, 12 Juli). The biologics revolution in the production of drugs. Fraser Institute. https://www.fraserinstitute.org/studies/biologics-revolution-in-the-production-of-drugs

Melvin, D. (2016). The promise and threat of biosimilars. Market Access Panorama. PM360. https://www.pm360online.com/the-promise-and-threat-of-biosimilars/

Ramzan, A. (2015). The future of biosimilars—monoclonal antibodies and beyond. Regulatory Rapporteur, 12(9), 5–9. https://www.topra.org/TOPRA/TOPRA_Member/REGRAP/Public/Regulatory_Rapporteur_Issue_Detail_Public.aspx?IssueID=484270&ID=57221

Rock, M. (2012, 1 November). Best practices for testing biosimilarity during clinical trials. Genetic Engineering and Biotechnology News. https://www.genengnews.com/magazine/best-practices-for-testing-biosimilarity-during-clinical-trials/

Urquhart, L. (2018). Top drugs and companies by sales in 2017. Nat Rev Drug Discov., 17, 232. https://doi.org/10.1038/nrd.2018.42

Weise, M., Bielsky, M. C., De Smet, K., Ehmann, F., Ekman, N., Giezen, T. J., Gravanis, I., Heim, H-K., Heinonen, E., Ho, K., Moreau, A., Narayanan, G., Kruse, N. A., Reichmann, G., Thorpe, R., Van Aerts, L., Vleminckx, C., Wadhwa, M., Schneider, C. K. (2012). Biosimilars: What clinicians should know. Blood, 120(26), 5111–5117.

Scroll to Top
×