Jarot Raharjo
Badan Riset dan Inovasi Nasional
DOI: https://doi.org/10.55981/brin.692
Keywords:
keramik maju, logam tanah jarang, sel bahan bakar, baterai, energi ramah lingkungan, Teknologi Material, Keramik maju, Solid Oxide Fuel Cell
Synopsis
Salah satu komponen yang tidak dapat dipisahkan dari kebutuhan energi listrik adalah perangkat penyimpan energi (baterai). Salah satu baterai isi ulang yang paling dominan saat ini adalah baterai ion-litium (lithium-ion battery, LiB). Pemerintah telah menerbitkan Peraturan Presiden RI Nomor 55 tahun 2019 tentang Percepatan Program Kendaraan Bermotor Listrik Berbasis Baterai (KBLBB) untuk transportasi jalan, sehingga pasar KBLBB di Indonesia akan berkembang pesat. Salah satu tantangan pengembangan baterai dalam kendaraan listrik adalah keamanan pengguna dan waktu pengisian daya yang lebih lama. Anoda LiB menggunakan grafit karena memiliki nilai kapasitas tinggi (372 mAh/g), namun pada pengisian daya yang lebih cepat, muncul kekhawatiran dari segi keamanan, karena grafit memiliki tegangan operasi yang terlalu rendah mendekati tegangan lithium plating. Alternatif material anoda LiB berbasis LTJ adalah lithium lanthanum titanate (LLTO) karena memiliki sifat pseudo-kapasitif yang sesuai digunakan untuk aplikasi pengisian daya yang cepat dan juga menyimpan energi spesifik yang tinggi. Kegiatan riset material SOFC dan baterai yang dilakukan memiliki kontribusi signifikan dalam menjawab tantangan penguasaan teknologi maju berbasis LTJ dalam menghasilkan material keramik maju yang bernilai tambah tinggi dengan memanfaatkan LTJ yang diolah di dalam negeri (LTJ Indonesia), sehingga dapat memacu pertumbuhan industri hilir secara bertahap seperti pada aplikasi SOFC dan baterai. Pengembangan teknologi aplikasi LTJ ini diharapkan juga dapat mendukung program pemerintah dalam memenuhi net zero emission pada tahun 2060 melalui penerapan teknologi energi bersih. Pada bagian awal orasi ini akan disampaikan tentang perkembangan material fuel cell dan baterai. Pada bab berikutnya akan disampaikan hasil riset keramik maju untuk LT-IT SOFC dan baterai. Selanjutnya akan disampaikan peluang pengembangan dan pemanfaatan LTJ Indonesia sebagai bahan keramik maju. Orasi ini akan diakhiri dengan kesimpulan dan penutup.
Author Biography
Jarot Raharjo, Badan Riset dan Inovasi Nasional
Menamatkan Sekolah Dasar Negeri Keputran VII Yogyakarta, tahun 1983, Sekolah Menengah Pertama Negeri 1 IKIP Yogyakarta, tahun 1986, dan Sekolah Menengah Atas BOPKRI 1 Yogyakarta, tahun 1989. Memperoleh gelar Sarjana Teknik Kimia dari Universitas Pembangunan Nasional (UPN) Yogyakarta tahun 1994, gelar Master of Science dari Universitas Indonesia (UI) tahun 2001, dan gelar Doctor of Philosophy in Chemical and Process Engineering dari Universiti Kebangsaan Malaysia (UKM) tahun 2012. Mengikuti beberapa pelatihan antara lain: Tailor made course on advances materials for fuel cells application di University of Delaware, U.S.A (2016), Tailor made course on fuel cell technology di Imperial College London, U.K (2015), Southeast Asia International Joint Research and Training Program – Low carbon green energy and environmental green technology for sustainable environmental development di National Tsing Hua University, Taiwan (2014), Training on thermo gravimetry analysis di Lyon, Perancis (2013), Heat treatment and metal finishing for improvement metal properties di JICA CBIC, Nagoya Jepang (2002), Sertifikasi Auditor Teknologi oleh Badan Nasional Sertifikasi Profesi (2019), dan Certified International Research Reviewer (CIRR) oleh Quantum HRM (2019). Menghasilkan 62 karya tulis ilmiah (KTI), baik yang ditulis sendiri maupun berkolaborasi dengan penulis lain dalam bentuk buku, jurnal dan prosiding. Sebanyak 19 KTI ditulis dalam bahasa Indonesia dan 43 KTI dalam bahasa Inggris, serta menghasilkan dua paten terdaftar. Ikut serta dalam pembinaan kader ilmiah, yaitu sebagai pembimbing jabatan fungsional peneliti dan perekayasa di Pusat Teknologi Material BPPT; pembimbing skripsi S1 di UI, ITS, ITB, UNJ, UIN Jakarta dan Surya University; pembimbing tesis S2 di UI dan ITS; pembimbing disertasi S3 di Universiti Kebangsaan Malaysia dan penguji disertasi S3 di UNDIP. Aktif dalam organisasi ilmiah, yaitu sebagai sebagai sekretaris umum Perhimpunan Indonesian Fuel Cell and Hydrogen Energy (IFHE), sebagai anggota Perhimpunan Periset Indonesia (PPI), Materials Research Society Indonesia, dan Badan Kejuruan Kimia Persatuan Insinyur Indonesia (PII). Menerima tanda Penghargaan Satyalancana Karya Satya X (2006), Karya Satya XX (2016), dan Satyalancana Wirakarya (2015) dari Presiden Republik Indonesia.
References
Suharyati, Pambudi SH, Wibowo JL, Pratiwi NI. Indonesia Energy Outlook 2019. In: Abdurrahman S, Pertiwi M, Walujanto, editors. Dewan Energi Nasional; 2019. 1–73.
Supriadi A, Kencono AW, Prasetyo BE, Kurniadi CB, Anggreani D, Setiadi I. Kajian potensi mineral ikutan pada pertambangan timah. Jakarta: Pusat Data dan Teknologi Informasi Energi dan Sumber Daya Mineral; 2017. 1–96.
Raharjo J, Dedikarni, Daud WRW. Perkembangan teknologi material pada sel bahan-bakar padat temperatur operasi menengah. Jurnal Sains Materi Indonesia. 2008;10(1):28–34.
Nandiyanto ABD, Maulana MI, Raharjo J, Sunarya Y, Minghat AD. Techno-economic analysis for the production of LaNi5 particles. Communications in Science and Technology. 2020 Nov 25;5(2):70–84.
Hanafi R, Mayasari RD, Masmui, Agustanhakri, Raharjo J, Nuryadi R. Electrochemical sensor for environmental monitoring system: A review. In: AIP Conference Proceedings 2169. Jakarta: AIP; 2019. 1–5.
Aprilia L, Nuryadi R, Mayasari RD, Gustiono D, Masmui, Raharjo J, et al. Growth of zinc oxide sensitive layer on microcantilever surface for gas sensor application. In: 2015 International Conference on Quality in Research. 2015. 151–154.
Mayasari RD, Yuliani H, Deni Y, Masmui, Raharjo J, Nuryadi R. Penumbuhan ZnO rods terdoping CeO2 pada substrat kaca menggunakan metode hidrotermal. Eksergi. 2019;16(2):31–4.
Roseno S, Effendi MD, Gustiono D, Raharjo J. Effect of Na+ concentration on luminescence of phosphor CaO: Ce3+, Na+ for white LED for surgery lamp prepared by solid state synthesis method. In: Sumirat I, Rifai M, editors. International Conference on Materials Science and Technology and Workshop on Neutron Scattering – ICWMST 2018. Tangerang Selatan: Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency; 2018. 61–5.
Passucci M, Katz R. Modern day applications of advanced ceramics. Interceram. 1993;42(2):71–8.
Dewi EL, Raharjo J. Perbandingan grafit bipolar plate model paralel dan serpentine sebagai komponen separator pada pemfc. In: Prosiding Seminar Nasional Teknoin 2008 Bidang Teknik Mesin. Yogyakarta: Universitas Islam Indonesia Yogyakarta; 2008. 47–50.
Abdalla AM, Hossain S, Petra PM, Ghasemi M, Azad AK. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy. 2020 Jun 28;14(2):359–382
Guanming Q, Xikum L, Tai Q, Haitao Z, Honghao Y, Ruiting M. Application of rare earth in advanced ceramic materials. Journal of rare earths. 2007;25(2): 281–286.
Perujo A, Van Grootveld G, Scholz H. Present and future role of battery electrical vehicles in private and public urban transport. In: New Generation of Electric Vehicles. InTech; 2012.3–25.
Chandrasekhar J, Dhananjaya M, Hussain OM, Mauger A, Julien CM. Enhanced electrochemical performance of Li4Ti5O12 by niobium doping for pseudocapacitive applications. InMicro. 2021 Jun 4;1(1):28–42.
Ma’dika B, Pravitasari RD, Tasomara R, Hapsari AU, Damisih, Raharjo J, et al. Synthesis of lithium lanthanum titanate derived from local lanthanum oxalate and its electrochemical impedance spectroscopic characterization for anode application in lithium-ion battery. In: The International Conference on Battery for Renewable Energy and Electric Vehicles (ICB-REV) 2021. Jakarta: AIP; 2021.
Massari S, Ruberti M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy. 2013 Mar 1;38(1)36–43.
Anderson CD, Taylor PR, Anderson CG. Rare earth flotation fundamentals: a review. American Journal of Engineering Research (AJER). 2017 Dec 14;6(11): 1–12.
Hua YC, Zhang C, Sun LD. Rare earth nanotechnology. 1st ed. Timothy TTY, editor. Singapore: Jenny Stanford Publishing; 2012. 1–262.
Sun Y, Guan P, Liu Y, Xu H, Li S, Chu D. Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium-ion secondary battery. Critical Reviews in Solid State and Materials Sciences. 2019;44(4).
Zhang Y, Knibbe R, Sunarso J, Zhong Y, Zhou W, Shao Z, et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C. Advanced Materials. 2017;29(48).
Srinivasan R, Chandra Bose A. Structural properties of Sm3+ doped cerium oxide nanorods synthesized by hydrolysis assisted co-precipitation method. Materials Letters. 2010 Sep 30;64(18):1954–1956.
Ali MSA, Raharjo J, Anwar M, Khaerudini DS, Muchtar A, Spiridigliozzi L, et al. Carbonate-based lanthanum strontium cobalt ferrite (LSCF)–samarium-doped ceria (SDC) composite cathode for low-temperature solid oxide fuel cells. Applied Sciences. 2020 May 28;10(11).
Raza R, Zhu B, Rafique A, Naqvi MR, Lund P. Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: a comprehensive review. Materials Today Energy. 2020 Mar;15(100373):1-16.
Lu Y, Zhu B, Shi J, Yun S. Advanced low-temperature solid oxide fuel cells based on a built-in electric field. Energy Materials. 2021; 1(100007):1-10.
Plett GL. Battery Management Systems. Volume 1: Battery modeling. 1st ed. Vol. 1. London: Artech House; 2015. 1–327.
Chen T, Jin Y, Lv H, Yang A, Liu M, Chen B, et al. Applications of lithium-ion batteries in grid-scale energy storage systems. Transactions of Tianjin University. 2020;26:208–217.
Booth SG, Nedoma AJ, Anthonisamy NN, Baker PJ, Boston R, Bronstein H, et al. Perspectives for next generation lithium-ion battery cathode materials. APL Materials. 2021;9(10).
Zhang L, Zhang X, Tian G, Zhang Q, Knapp M, Ehrenberg H, et al. Lithium lanthanum titanate perovskite as an anode for lithium-ion batteries. Nature Communications. 2020;11(1):1–8.
Yi T-F, Wei T-T, Li Y, He Y-B, Wang Z-B. Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Materials. 2020 Apr;26:165–197.
Yaroslavtsev AB, Stenina IA, Kulova TL, Skundin AM, Desyatov AV. Nanomaterials for electrical energy storage. In: Andrews DL, Lipson RH, Nann T, Gregory DH, editors. Comprehensive Nanoscience and Technology. 2nd ed. London: Elsevier; 2019.165–206.
Tomaszewska A, Chu Z, Feng X, O’Kane S, Liu X, Chen J, et al. Lithium-ion battery fast charging: a review. eTransportation. 2019 Aug;1.
Okumura T, Ina T, Orikasa Y, Arai H, Uchimoto Y, Ogumi Z. Improvement of lithium-ion conductivity for A-site disordered lithium lanthanum titanate perovskite oxides by fluoride ion substitution. Journal of Materials Chemistry. 2011;21(27).
Furusawa S, Tabuchi H, Sugiyama T, Tao S, Irvine J. Ionic conductivity of amorphous lithium lanthanum titanate thin film. Solid State Ionics. 2005 Feb 14;176(5–6).
Setyadji M, Purwani MV, Suyanti, Sudibyo. Desain konsep: pilot plant pengolahan REOH menjadi CeO2, La2O3 dan konsentrat Na(OH)3 kapasitas 25 kg/hari. 1st ed. Sediawan WB, editor. Yogyakarta: Pustaka Pelajar; 2017. 1–115.
Damisih D, Hapsari AU, Agustanhakri A, Deni Y, Arjasa OP, Raharjo J, et al. Characteristics of gadolinium doped cerium at different calcination temperatures for intermediate temperature SOFC. Sains Malaysiana. 2020 Dec 31;49(12):3135–3142.
Hapsari AU, Raharjo J, Yuliani H, Suradharmika IGA, Damisih, Pravitasari RD, et al. Synthesis and characterization of gadolinium doped cerium (Ce0,9Gd0,1O 1,95) by using various carbonates as a precipitant. IOP Conference Series: Materials Science and Engineering. 2019;622.
Damisih, Raharjo J, Yuliani H, Hapsari AU, Masmui, Pravitasari RD, et al. Effect polyethylene glycol (PEG 400) to the physical properties of gadolinium doped cerium (Ce 0.9Gd0.1O1.95) nanoparticles synthesized by co-precipitation method. IOP Conference Series: Materials Science and Engineering. 2019;622.
Raharjo J, Muhammed Ali SA, Arjasa OP, Bakri A, Damisih, Dewi EL, et al. Synthesis and characterization of uniform-sized cubic ytterbium scandium co-doped zirconium oxide (1Yb10ScSZ) nanoparticles by using basic amino acid as organic precursor. International Journal of Hydrogen Energy. 2017 Apr;42(14):9274–9283.
Raharjo J, Arjasa OP, Agustanhakri A, Damisih. Composite electrolyte of SOFC based on stabilized zirconia 1Yb10ScSZ nanopowder. Advanced Materials Research. 2015 Jul;1112.
Raharjo J, Arjasa OP, Arti DK, Agustanhakri, Sudaryanto, Septiva S. Ytterbium scandium co-doped zirconium oxides (1Yb10ScSZ) nanoparticles for intermediate temperature solid oxide fuel cell electrolytes. In: Oka AP, Saputra DA, Kurniawan, Darmawan A, editors. Proceedings of the 4th International Conference on Fuel Cells and Hydrogen Technology 2013 (ICFCHT2013). Yogyakarta: Center for Materials Technology; 2013. 81–4.
Arjasa OP, Raharjo J, Agustanhakri, Arti DK. Studi pertumbuhan partikel 1Yb10ScSZ pada metode sol-gel dan presipitasi. In: Waluyo J, Mindaryani A, Suprihastuti, Dharmastiti R, editors. Seminar Nasional Perkembangan Riset dan Teknologi di Bidang Industri k-20. Yogyakarta: Universitas Gadjah Mada – Yogyakarta; 2014. 11–5.
Raharjo J, Damisih, Hapsari AU, Pravitasari RD, Yuliani H. Karakteristik elektrolit Ce0.9Gd0.1O1.95 dengan metode sintesis coprecipitation untuk aplikasi sel bahan bakar padatan. In: Winata T, Iskandar F, Aimon AH, editors. Prosiding Seminar Nasional Material 2018. Bandung: Institut Teknologi Bandung; 2018. 1–7.
Damisih, Raharjo J, Masmui, Aninda RS, Lestari NA. Synthesis and characterization of La, Sc, Yb and Nd co-doped gadolinium doped cerium (GDC) composite electrolyte for IT-SOFC. Journal of Physics: Conference Series. 2017;877.
Raharjo J, Damisih, Hapsari AU, Masmui, Yanti PP. Sintesis dan karakterisasi elektrolit Ce0,9Gd0,1-XNdXO1,90 untuk aplikasi sel bahan bakar padatan suhu sedang. Jurnal Sains Materi Indonesia. 2018 Jan;19(2):83–90.
Raharjo J, Muchtar A, Daud WRW, Muhamad N, Majlan EH. Physical and thermal characterisations of SDC-(Li/Na)2CO3 electrolyte ceramic composites. Sains Malaysiana. 2012;41(1):95–102.
Raharjo J. Konduktivitas ionik komposit elektrolit SDC-(Li/Na)2CO3 untuk solid oxide fuel cell bersuhu rendah. Jurnal Sains Materi Indonesia. 2013 Apr;14(3):159–65.
Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes. ChemInform. 2004 Dec 14;35(50).
Fergus J, Hui R, Li X, Wilkinson DP, Zhang J. Solid oxide fuel cells: materials properties and performance. 1st ed. Fergus J, Hui R, Li X, Wilkinson DP, Zhang J, editors. Florida: CRC Press; 2008. 1–298.
Mah JCW, Muchtar A, Somalu MR, Ghazali MJ, Raharjo J. Formation of sol–gel derived (Cu, Mn, Co)3O4 spinel and its electrical properties. Ceramics International. 2017 Jul;43(10):7641–7646.
Ali MSA, Muchtar A, Mah JCW, Raharjo J, Khaerudini DS. Effect of open pore and pore interconnectivity in the Ni-SDC cermet anode microstructure on the performance of solid oxide fuel cells. In: the 32nd Symposium of Malaysian Chemical Engineers 2021. Kuching; 2021. 1–8.
Electrochemical performance of barium strontium cobalt ferrite -samarium doped ceria-argentum for low temperature solid oxide fuel cell. Materials Science Forum. 2020 May;991:94–100.
Raharjo J, Muchtar A, Daud WRW, Muhamad N, Majlan EH. Porous NiO-SDC carbonates composite anode for LT-SOFC applications produced by pressureless sintering. Applied Mechanics and Materials. 2011 Mar;52–54:488–93.
Raharjo J, Muchtar A, Daud WRW, Muhamad N, Majlan EH. Fabrication of porous LSCF-SDC carbonates composite cathode for solid oxide fuel cell (SOFC) applications. Key Engineering Materials. 2011 Feb;471–472:179–184.
Raharjo J, Muchtar A, Daud WRW, Muhamad N, Majlan EH. Fabrication of dense composite ceramic electrolyte SDC-(Li/Na)2CO3. Key Engineering Materials. 2010 Sep;447–448:666–670.
Raharjo J, Damisih, Masmui, Hapsari AU, Riswoko A, Setyadji M, et al. Effect of the rare earth oxide impurities on the physical and thermal properties of Ce0.9Gd0.1O0.195 (GDC) composite electrolyte IT-SOFC. Materials Science Forum. 2018 Aug;929:116–120.
Raharjo J, Yuliani H, Masmui, Hapsari AU, Damisih, Pangestika PW, et al. Studi pengaruh presipitan basa terhadap sifat fisik nanomaterial cerium dioksida (CeO2) dengan metode presipitasi. In: Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia. Yogyakarta: Universitas Pembangunan Nasional Yogyakarta; 2018. K14-1-K14-5.
Hapsari AU, Pravitasari RD, Yuliani H, Damisih, Raharjo J. Analisis kemurnian hasil sintesis gadolinium doped cerium (GDC) menggunakan prekursor Gd2O3 dan Ce(OH)4 lokal dengan metode kopresipitasi. Jurnal Inovasi dan Teknologi Material. 2019 Jun 3;1(1):11–5.
Damisih, Raharjo J, Hapsari AU, Agustanhakri, Ali M, Muchtar A. Solid state synthesis and characterization of Ce0.9Gd0.1O1.95 for solid electrolyte application using CeO2 precursor extracted from Indonesia monazite sand. In: HPI International Conference on Innovation in Polymer Science and Technology 2019 In conjunction with The 7th International Conference on Fuel Cell & Hydrogen Technology. Bali: Himpunan Polimer Indonesia; 2019.
Hapsari AU, Zulfia A, Raharjo J, Agustanhakri. Effect of the cerium oxide (CeO2) on the structural and electrochemical properties of the LaNi5Ce metal hydride anode. Journal of Physics: Conference Series. 2017 Jul;877.
Hapsari AU, Pravitasari RD, Damisih, Yuliani H, Sujani N, Raharjo J. Sintesis dan karakterisasi black powder La2NiO4 sebagai produk antara untuk aplikasi anoda baterai NiMH. In: Winata T, Iskandar F, Aimon AH, editors. Prosiding Seminar Nasional Material 2018. Bandung: Institut Teknologi Bandung; 2018. 8–14.
Hapsari AU, Raharjo J, Damisih, Wahyudin. Sintesis dan karakteristik CeNi5 dari oksida logam tanah jarang dengan metode solid state. In: Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia. Yogyakarta: Universitas Pembangunan Nasional; 2018. A6-1-A6-6.
Hapsari AU, Pravitasari RD, Damisih, Saudi AU, Khaerudini DS, Raharjo J, et al. Effect of dissolution temperature on purity of LaNi5 powder synthesized with the combustion reduction method. Journal of Engineering and Technological Sciences 2021;53(5).
Hidayanti F, Lestari KR, Sujani N, Raharjo J. A physical chemistry study of black powder materials by solution combustion synthesis method. Biology, Medicine, & Natural Product Chemistry. 2021 Oct;10(2):93–103.
Abiyu FT, Pravitasari RD, Tasomara R, Hapsari AU, Damisih, Raharjo J, et al. Synthesis of lithium titanium oxide (Li4Ti5O12) through sol-gel method and the effect of graphene addition in lithium-ion battery anodes. In: The International Conference on Energy Storage Technology and Applications (ICESTA 2021). Solo: Universitas Negeri Sebelas Maret Solo; 2021.