Sensus Wijonarko
Research Center for Physics
DOI: https://doi.org/10.14203/press.399
Keywords:
Instrumentasi Neraca Air, Sistem Pengamat Hidrometeorologi Terpadu, Ketahanan Air
Synopsis
Telah dikembangkan Instrumentasi Neraca Air yang berupa sistem yang tujuan akhirnya dapat mengambil keputusan sendiri secara otomatis untuk memantau dan membantu mengelola perubahan aktual neraca air di kawasan yang dikelolanya sehingga ketahanan air setempat akan membaik. Instrumentasi ini perlu dilengkapi instrumen pengendali untuk menambah persediaan air bersih, mengurangi pemakaian air bersih, mengolah air bekas pakai, dan mengatur jenis air sesuai peruntukannya. Instrumentasi neraca air ini diharapkan dapat dihubungkan dengan sistem pemantau hidrometeorologi terpadu melalui instansi yang nantinya punya jalur menuju WIGOS dan/atau sistem-sistem lain sebagai bagian dari Decision Making Support System (DMSS) dalam bidang hidrometeorologi. Dengan interkoneksi yang seperti ini, instrumentasi neraca air ini dapat membantu meningkatkan jaminan ketahanan air di kawasan yang dikelolanya, untuk berbagai aplikasi sejak dari hulu sampai hilir.
References
SIEMENS. Portfolio: Products and solutions supporting a reliable, affordable, and efficient power supply [Internet]. [Diakses pada 9 September 2020]. Tersedia di https://www.siemens-energy.com/global/en/offerings/pow er-generation.html
Mazur Z, Luna-RamÃrez A, Juárez-Islas JA, Campos-Amezcua A. Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Engineering Failure Analysis. 2005; 12(3): 474–86.
Rani S, Agrawal AK, Rastogi V. Failure analysis of a first stage IN738 gas turbine blade tip cracking in a thermal power plant. Case Studies in Engineering Failure Analysis. 2017;8:1–0.
Ziegler D, Puccinelli M, Bergallo B, Picasso A. Investigation of turbine blade failure in a thermal power plant. Case Studies in Engineering Failure Analysis. 2013 ;1(3):192–9.
Adnyana DN. Corrosion fatigue of a low-pressure steam turbine blade. Journal of Failure Analysis and Prevention. 2018;18(1):162–73.
Nurbanasari M, Abdurrachim. Crack of a first stage blade in a steam turbine. Case Studies in Engineering Failure Analysis. 2014;2(2):54–60.
Oguma H, Tsukimoto K, Goya S, Okajima Y, Ishizaka K, Ito E. Development of advanced materials and manufacturing technologies for high-efficiency gas turbines. Mitsubishi Heavy Industries Technical Review. 2015;52(4):5–14.
Noda S, Senitani S, Yamada Y, Sasaki T. Improved technologies of steam turbine for long term continuous operation. Mitsubishi Heavy Industries, Ltd. Technical Review. 2004;41(3):1–5.
Mabruri E, Anwar MS. Kombinasi pelapisan krom dan nitriding suhu tinggi pada martensitic stainless steel AISI 420. Prosiding Seminar Material Metalurgi. 2010.
Anwar MS, Mabruri E. Modifikasi permukaan baja tahan karat martensitik 420 dengan bahan coating yang berbeda. Korosi. 2010: 19(1).
Citrawati F, Mabruri E. Pelapisan aluminium baja tahan karat martensitik AISI 420 melalui metode celup panas. Metalurgi. 2009;24(2):73–80.
Kevin, Anwar MS, Saefudin, Alfirano, Mabruri E. Pengaruh komposisi lelehan dan waktu celup terhadap struktur mikro lapisan hot dip aluminizing pada baja tahan karat martensitik. Widyariset. 2019;5(1):21–9.
Kevin M, Anwar MS, Alfirano, Mabruri E. Karakteristik lapisan hot dip aluminizing pada baja tahan karat martensitik 13cr. Metalurgi. 2019;34(3):151–8.
Harini, Mabruri E, Elektrokodeposisi komposit Ni-BN. Metalurgi. 1998.
Nikitasari A, Mabruri E. Study of electroless Ni-W-P alloy coating on martensitic stainless steel. AIP Conference Proceedings. 2016;1725 (020039).
Nikitasari A, Mabruri E. Pengaruh konsentrasi hipofosfit dan waktu pelapisan terhadap karakteristik mikrostruktur lapisan electroless Ni-P. Jurnal Teknologi Bahan dan Barang Teknik. 2017;7(1):1–6.
Nurhakim B, Nikitasari A, Sunardi, Mabruri E. Pengaruh suhu dan waktu pemanasan terhadap karakteristik lapisan elektroles Ni-P pada baja tahan karat martensitik Ss 420. Jurnal Sains Materi Indonesia. 2017;18(4):167–72.
Dwi RR, Nikitasari A, Sunardi, Mabruri E. Pengaruh kekasaran permukaan dan kecepatan pengadukan terhadap karakteristik lapisan nirelektrik Ni-P pada baja tahan karat martensitik. Widyariset. 2018;4(1):21–28.
Lestari Y, Mabruri E, Syahrial AZ. Studi pelapisan komposit Ni-P-Nano Al2O3 dengan metode elektroless co-deposition. Metalurgi. 2016; 31(1).
Lestari Y, Mabruri E, Syahrial AZ. Studi pengaruh variasi suhu perlakuan panas terhadap strukturmikro dan korosifitas pada pelapisan Ss 410 menggunakan komposit Ni-P-Nano partikel Al2o3. Jurnal Sains Materi Indonesia. 2017;18(3):109–15.
Stephani A, Oediyani S, Lestari Y, Mabruri E. Pengaruh parameter elektro-pulsa deposisi nikel terhadap struktur mikro lapisan deposit dan laju korosi pada baja AISI 410. Widyariset. 2018;4(2):143–152.
Nikitasari A, Amrani DO, Zulaifa L, Prasetyo MA, Anwar MS, Mabruri E. The influence of coating time on corrosion resistance of Ni/Ni-SiC composite coating. Dalam AIP Conference Proceedings; 2020 Sep 17. 2262 (030001).
Rohmah M, Yunita, Anwar MS, Mabruri E . Pengaruh waktu pelapisan Ni dan komposit Ni/SiC terhadap kekerasan dan ketahanan abrasi AISI 410 menggunakan metode pulsa elektrodeposisi. Jurnal Metalurgi dan Material Indonesia. 2020;3(1):13 –7.
Schilke PW. Advanced gas turbine materials and coatings. General Electric Company. 1995–2004. GER-3569G.
ASTM International. Chapter 2-development of high (7-12%) chromium martensitic steels. Dalam: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ed. West Conshohocken, PA: ASTM International; 2001. 5–27.
Rusing, Wanderka N, Czubayko U, Naundorf V, Mukhreji D, Rosler J. Rhenium distribution in the matrix and near the particle–matrix interface in a model Ni–Al–Ta–Re superalloy. Scripta Materialia 2002; 46(3): 235–240.
Carron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerospace Science and Technolology. 1999 Des 1;3(8):513–23.
Mabruri E. Microstructural observation of the ’ precipitation and growth in Ta containing Ni based superalloys. Prosiding Seminar Material Metalurgi 2009.
Kracke A. Superalloys, the most successful alloy system of modern times – past, present and future. Dalam: 7th International Symposium on Superalloys 718 and Derivatives. The TMS (The Minerals, Metals and Materials Society); 2010. 13–50.
Dieter GE. Creep and stress rupture. Dalam: Mechanical Metallurgy, SI Metric Edition/Diadaptasi oleh David Bacon. McGraw-Hill series in Materials Science and Engineering; 1988. 432–470.
Nabarro FRN, deVilliers HL. The physics of creep. London: Taylor & Francis; 1995.
Versnyder FI, Shank ME. The development of columnar grain and single crystal high temperature materials through directional solidification. Materials Science and Engineering. 1970 Okt 1;6(4):213–47.
Giamei AF. Development of single crystal superalloys: A brief history. Advanced Materials & Processes 2013; 171(9): 26–30.
Mabruri E. Peranan unsur refraktori di dalam nickel based superallloy: Suatu review. Metalurgi 2011; 26(2): 67–78.
Hashizume R, Yoshinari A, Kiyono T, Murata Y, Morinaga M. Development Of Ni-Based single crystal superalloys for power-generation gas turbines. Dalam: Green KA et al., editor. Superalloys. TMS (The Minerals, Metals & Materials Society); 2004. 53–62.
Rae CMF, Reed RC. The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Materialia. 2001;49(19):4113–25.
Dubiel B, Indyka P, Kruk A, Kalemba-Rec I, Moskalewicz T, Berent K, Gajewska M. Characterisation of TCP phases in CMSX-4 single crystal superalloy subjected to high temperature annealing and creep deformation. Inzynieria Materialowa. 2016; 4(212): 150–155.
Sugui T, Minggang W, Tang L, Benjiang Q, Jun X. Influence of TCP phase and its morphology on creep properties of single crystal nickel-based superalloys. Materials Science and Engineering: A. 2010;527 (21-22):5444–51.
Hobbs RA, Zhang L, Rae CMF, Tin S. TCP Suppression in a ruthenium-bearing single-crystal nickel-based superalloy. Journal of Metals. 2008; 60(7):37–42.
Mori Y, Yokokawa T, Kobayashi T, Harada H, Suzuki S. Phase stability of nickel-base single crystal superalloys containing iridium substituting for ruthenium. Materials Transactions. 2016;57(10):1845–8.
Cornish LA, Chown LH. Platinum-based alloys and coatings: Materials for the future? Dalam: Ernesto Benini, editor. Advanced in Gas Turbine Technology. InTech. 2011.
Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines?. Intermetallics. 2006;14(10).
Zdzislaw MC, Alejandro HR, Rafael GI. L-0 blades failure investigation of a 110 MW geothermal turbine. Dalam: Proceedings of PWR2006, ASME Power. 2006 Mei 2–4.
Das G, Chowdhury SG, Ray AK, Das SK, Bhattacharya DK. Turbine blade failure in a thermal power plant. Engineering Failure Analysis. 2003;10(1):85–91.
Lee HT, Liu FM, Hou WH. Application and characteristics of low-carbon martensitic stainless steels on turbine blades. Materials Transactions. 2015;56(4):563–9.
Fan R, Gao M, May Y, Zha X, Hao X, Liu K. Effects of heat treatment and nitrogen on microstructure and mechanical properties of 1Cr12NiMo. Jornal of Materials Science & Technology. 2012;28(11):1059–66.
Zang Q, Jin Y, Zhang T, Yang Y. Effect of yttrium addition on microstructure, mechanical and corrosion properties of 20Cr13 martensitic stainless steel. Journal of Iron and Steel Research International. 2020 Mar 18;27(12):451–460.
Lucacci G. Steels and alloys for turbine blades in ultra-supercritical power plants. Dalam: Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants; 2017. 175–196.
Seol JB, Choi JM, Kim JH. Influence of Solid Solution Treatment on the Mechanical Properties of A286 Stainless Steels. Science Advanced Materials. 2016 Nov;8(12):2290–94.
Shingledecker JP, Maziasz PJ, Evans ND, Santella ML, Pollard MJ. CF8C plus: a new high temperature austenitic casting alloy for advanced power systems. Materials Science and Engineering for Energy Systems. 2006 Mar;1(1):25–32.
Pollock TM, Argon AS. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metallurgica et Materialia. 1992 Jan;40(1):1–30.
Matan N, Cox DC, Rae CMF and Reed RC. On the kinetics of rafting in CMSX-4 superalloy single crystals. Acta Materialia. 1999 Mei 28;47(7):2031–45.
Walston S, Cetel A, Mackay R, Ohara K, Duhl D, Dreshfield R. Joint development of a fourth generation single crystal superalloy. Dalam: Green KA et al, editors. Superalloys; 2004. TMS (The Minerals, Metals & Materials Society; 2004. 15–24.
Mabruri E, Hattori M, Goto N, Murata Y, Morinaga M. Interdiffusion of Alloying Elements in Ni Based Alloys. Metalurgi. 2009 Juli; 24(1).
Mabruri E, Hattori M, Hasuike K, Kunieda T, Murata Y, Morinaga M. Al and Re Interdiffusion in the y-Phase of Ni-Al-Re System. Materials Transactions. 2006;47(5):1408–11.
Murata Y, Hattori M, Mabruri E, Goto N, Koyama T, Morinaga M. Diffusion Coefficients of refractory elements in multi-component Ni alloys. Proceeding of Materials for Advanced Power Engineering. 2006 Jul: 561–70.
Murata Y, Sakurai S, Mabruri E, Koyama T, Morinaga M. Cross interdifusion coefficients in nickel- and iron based ternary alloys. Defect and Diffusion Forum 2008; 273: 419–424.
Mabruri E, Sakurai S, Murata Y, Koyama T, Morinaga M. Diffusion of Re and Ru in the ’ phase of Ni based alloys. Materials Transactions. 2008;49(6).
Mabruri E, Sakurai S, Murata Y, Koyama T, Morinaga M. Interdiffusion in Ni-Co-Re and Ni-Co-Ru systems. Materials Transactions. 2007;48(10): 2718–23.
Sakurai S, Mabruri E, Murata Y, Koyama T, Morinaga M. Diffusion of refractory elements in Ni-X-Y (X,Y: Co,Re,Ru,W) ternary alloys. Defect and Diffusion Forum. 2008;273:572–6.
Mabruri E. Interdifusi efektif-fungsi konsentrasi di dalam paduan terner Ni-Re-X (X=Ru,Co). Metalurgi. 2013;28(2).
Mabruri E. Pengaruh Ruthenium terhadap struktur mikro aging superalloy berbasis nikel. Jurnal Sains Materi. Edisi Khusus Desember 2008 Des: 88-92.
Mabruri E, Sakurai S, Murata Y, Koyama T, Morinaga M. Diffusion and ’ phase coarsening in ruthenium containing nickel based alloys. Materials Transactions. 2008;49(4):792–9.
Zhang JX, Murakumo T, Harada H, Koizumi Y. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138. Scripta Materialia. 2003; 48(3):287–93.
Long H, Mao S, Liu Y, Zhang Z, Han X. Microstructural and compositional design of Ni-based single crystalline superalloys – A review. Journal of Alloys and Compounds. 2018;743:203–20.
Schonbauer BM, Stanzl-Tschegg SE, Perlega A, Salzman RN, Rieger NF, Zhou S, Turnbull A, Gandy D. Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios. International Journal Fatigue 2014; 65: 33–43.
Wu K, Ito K, Shinozaki I, Chivavibul P, Enoki M. A comparative study of localized corrosion and stress corrosion cracking of 13Cr martensitic stainless steel using acoustic emission and x-ray computed tomography. Materials. 2019;12(16): 2569.
Pardo A, Merino MC, Coy AE, Viejo F. Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions, Corrosion Science. 2008;50(6):1796–806.
Mabruri E, Anwar MS, Prifiharni S, Romijarso TB, Adjiantoro B. Pengaruh Mo dan Ni terhadap struktur mikro dan kekerasan baja tahan karat martensitik 13Cr. Majalah Metalurgi. 2015;3:133–40.
Anwar MS, Romijarso TB, Mabruri E. Pitting Resistance of the Modified 13Cr Martensitic Stainless Steel in Chloride Solution. International Journal of Electrochemical Science. 2018; 13: 1515–1526.
Mabruri E, Anwar MS, Prifiharni S, Romijarso TB, Adjiantoro B. Tensile propertiers of the modified 13Cr martensitic stainless steel. AIP Conference Proceedings. 2016;1725(1):020039.
Mabruri E, Sujianto, Anwar MS, Romijarso TB, Adnyana DN. Comparison of strength, microstructure and corrosion resistance of stainless steels type 410 and type 410-3Mo in tempered condition. Materials Today: Proceedings. 2019;13(1):121–6.
Anwar MS, Mabruri E. Ketahanan aus abrasif dari beberapa jenis modifikasi 13Cr baja tahan karat martensit. Majalah Metalurgi. 2015;3:149–54.
Apriani AS, Anwar MS, Rusnaldy, Mabruri E. Peningkatan ketahanan aus pada baja tahan karat martensitik 13cr Aisi 410 setelah proses austenisasi dan tempering. Metalurgi. 2017;3:115–22.
Anwar MS, Prifiharni S, Mabruri E. Optimizing heat treatment process of Fe-13Cr-3Mo-3Ni martensitic stainless of steel. IOP Conf. Series: Materials Science and Engineering. 2017;202, 012037.
Dwisaputro R, Anwar MS, Rusnaldy, Mabruri E. Pengaruh perlakuan panas baja tahan karat martensitik aisi 410 terhadap strukturmikro dan ketahanan korosi. Metalurgi 2018; 33(1): 19–26.
Prifiharni S, Ahmad D, Juniarsih A, Mabruri E. Strukturmikro, kekerasan, dan ketahanan korosi baja tahan karat martensitik 13Cr3Mo3Ni hasil quench-temper dengan variasi temperatur dan waktu austenisasi. Metalurgi. 2017;32(2):83–90.
Mabruri E, Prifiharni E, Anwar MS, Romijarso TB, Adjiantoro B. Mechanical properties optimization of the modified 410 martensitic stainless steel by heat treatment process. Materials Today: Proceedings. 2018;5(7):14918–22.
Praguna FD, Anwar MS, Sunardi S, Mabruri E. Ketahanan impak, kekerasan dan strukturmikro pada baja tahan karat martensitik 13 Cr3Mo3Ni dengan variasi suhu perlakuan panas. Jurnal Sains Materi Indonesia. 2018;19(3):125–30.
Mabruri E, Syahlan ZA, Sahlan, Prifiharni S, Anwar MS, Chandra SA, Romijarso TB, Adjiantoro B. Influence of austenitizing heat treatment on the properties of the tempered type 410-1Mo stainless steel. IOP Conf. Series: Materials Science and Engineering. 2017;202(012085).
Prifiharni S, Anwar MS, Mabruri E. Pengaruh perlakuan panas terhadap struktur mikro dan ketahanan korosi baja tahan karat martensitik 13Cr-1Mo. Widyariset. 2016; 2(1):9–16.
Mabruri E, Nikitasari A, Anwar MS, Romijarso TB, Adjiantoro B. Pengaruh suhu quenching dan suhu tempering terhadap ketahanan korosi baja martensitik modifikasi 410-3Mo3Ni untuk aplikasi sudu turbin uap. Prosiding SENAMM X. 2017:727–35.
Mabruri E, Pasaribu RR, Sugandi MT, Sunardi. Effect of high temperature tempering on the mechanical properties and microstructure of the modified 410 martensitic stainless steel. AIP Conference Proceedings. 2018;1964 (020032).
Mabruri E, Syahlan ZA, Sahlan, Anwar MS, Romijarso TB. Effect of tempering temperature on hardness and impact resistance of the 410-1Mo martensitic stainless steels for steam turbine blades. International Journal of Engineering and Technology. 2016;8(6):2547–51.
Prifiharni S, Perdana H, Romijarso TB, Adjiantoro B, Juniarsih A, Mabruri E. The Hardness and microstructure of the modified 13Cr steam turbine blade steel in tempered conditions. The International Journal of Engineering and Technology. 2017;8(6):2672–5.
Perdana H, Anwar MS, Juniarsih A, Mabruri E. Pengaruh suhu dan waktu tempering terhadap kekerasan, struktur mikro dan laju korosi baja tahan karat martensitik 13Cr3Mo3Ni. Metalurgi. 2017:32(1):37–44.
Anwar MS, Prifiharni S, Mabruri E. The effect of tempering temperature on pitting corrosion resistance of 420 stainlesss steel. AIP Conference Proceedings. 2016;1725, 020039.
Prifiharni S, Sugandi MT, Pasaribu RR, Sunardi, Mabruri E. Investigation of corrosion rate on the modified 410 martensitic stainless steel in tempered condition. IOP Conf. Series: Materials Science and Engineering. 2019;541, 012001.
Rusnaldy, Mabruri E, Nugroho LW. Effect of heat treatment on the stress corrosion cracking (scc) susceptibiliy of the 13Cr martensitic stainless steel for steam turbine blade. IOP Conference Series: Materials Science and Engineering. 2019;547, 012059.
Anwar MS, Chandra SA, Hakim RN, Prifiharni S, Mabruri E. High-temperature oxidation resistance of martensitic stainless steel 13Cr3Mo3Ni-cast after heat treated. Materials Today: Proceeding. 2019;13(1):235–40.
Anwar MS, Yulianto EJ, Chandra SA, Hakim RN, Hastuty S, Mabruri E. Pengaruh perlakuan panas terhadap struktur mikro, kekerasan dan ketahanan oksidasi suhu tinggi pada baja tahan karat martensitik 13Cr3Mo3Ni Cast. Teknik. 2019;40(1):11–17.
Mabruri E, Sigit HM, Anwar MS, Prasetyo MA, Nikitasari A, De Fretes A. Pitting corrosion resistance of CA6NM and 410 martensitic stainless steels in various environments. IOP Conference Series: Materials Science and Engineering. 2020;858, 012049.
Nikitasari A, Prasetyo MA, Riastuti R, and Mabruri E. Pitting corrosion resistance of CA6NM as geothermal turbine blade material in simulated artificial geothermal brine. IOP Conf. Series: Materials Science and Engineering. 2019;541, 012016.
Prasetyo MA, Puspasari V, Anwar MS, Nikitasari A, Mabruri E. Mechanical properties of modified cast martensitic stainless steel CA6NM with addition of molybdenum and nitrogen. AIP Conference Proceedings. 2020;2232, 060001.
Aprilliansyah AT, Sunardi, Anwar MS, Mabruri E. Pengaruh suhu dan waktu tempering terhadap struktur mikro, kekerasan, dan ketahanan abrasif baja tahan karat martensitik Cor modifikasi Ca-15. Metal Indonesia. 2019;41(1):31–9.
Prifiharni S, Anwar MS, Nikitasari A, Mabruri E. The hardness, microstructure, and pitting resistance of austenitic stainless steel Fe25Ni15Cr with the addition of tungsten, niobium, and vanadium. AIP Conference Proceedings. 2018;1964, 020041.
Andrianingtyas RM, Anwar MS, Hastuty S, Widharyanti ID, Dahliyanti A, Prastomo N, Mabruri E. Role of tungsten, niobium, and vanadium on corrosion resistance of austenitic stainless steels in chloride ion environment. AIP Conference Proceedings. 2018;1964, 020034.
Anwar MS, Mulya B, Oediyani S, Mabruri E. Pengaruh perlakuan panas terhadap ketahanan korosi baja tahan karat austenitik Fe25Ni15Cr. Prosiding SENAMM X. 2017 Nov 8:736–41.
Anwar MS, Muzi, Saefudin, Mabruri E. Effect of heat treatment process on hardness and hot corrosion resistance of Fe-25Ni-18Cr-1Mo-2W-1Nb cast austenitic stainless steel. Materials Today: Proceeding 2021;44(3):3434–8.
Nugroho HZ, Anwar MS, Wiyono S, Mabruri E. Pengaruh pemesinan milling terhadap kekasaran permukaan baja tahan karat martensitik modifikasi AISI 410-3Mo-3Ni dan keausan material cutter end Mill. Metalurgi. 2018;3: 145 Cutter End Mill 52.