Mukh Syaifudin
Badan Riset dan Inovasi Nasional
DOI: https://doi.org/10.55981/brin.563
Keywords:
biologi, radiasi, efek, DNA, sel, biodosimetri, Radiologi, Biologi Radiasi, Ilmu Kedokteran
Synopsis
Buku ini termasuk bagian dari upaya mendiseminasikan perihal pengertian radiasi, bagaimana radiasi berinteraksi dengan materi dan hasil-hasil riset lain dalam bidang khusus yang disebut biologi radiasi. Menilik dari cakupan buku ini, maka bagi pembaca yang ingin mengetahui tentang elemen dasar radiasi, buku ini memberikan informasi yang sangat baik tentang apa itu radiasi, dosis radiasi, bagaimana pengukuran, dan perhitungan dosis radiasi serta efeknya pada manusia. Di sisi lain, bagi mahasiswa dan praktisi yang belajar dan bergelut dengan bidang biologi radiasi, buku ini juga memberikan uraian dan pembahasan tentang riset terkait aplikasi di bidang medis dilengkapi dengan status terkini.
Author Biography
Mukh Syaifudin, Badan Riset dan Inovasi Nasional
Mukh Syaifudin lahir di Purworejo, Jawa Tengah, tanggal 1 Juni 1965. Memperoleh gelar Sarjana Kimia dari Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA), Universitas Gadjah Mada, Yogyakarta, tahun 1988. Bekerja sebagai Peneliti sejak 1989 pada Pusat Teknologi Keselamatan dan Metrologi Radiasi, Badan Tenaga Nuklir Nasional (BATAN) yang saat ini telah berintegrasi menjadi Badan Riset dan Inovasi Nasional (BRIN) di Pusat Riset Teknologi Radioisotop, Radiofarmaka dan Biodosimetri. Memperoleh gelar Doktor dari Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Jepang, tahun 2002. Pernah menduduki jabatan Kepala Kelompok Radiobiologi di BATAN. Saat ini memiliki gelar Profesor Riset bidang Biologi Radiasi.
References
Contoh Radiasi Dalam Kehidupan Sehari-hari. (2022). RT. https://sainsmania.com/10-contoh-radiasi-dalam-kehidupan-sehari-hari/
Adewoye, A. B., Lindsay, S. J., Dubrova, Y. E., & Hurles, M. E. (2015). The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline. Nature Communications, 6(1), 6684.
Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš J., Bass D., Bowser S. S., Brown M. W., Burki F., Dunthorn M., Hampl V., Heiss A., Hoppenrath, M., Lara E., le Gall L., Lynn D. H., McManus H., Mitchell E. A. D., Mozley-Stanridge, S. E., Parfrey, L. W., … Spiegel, F. W. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59(5), 429–514.
Agrawala, P. K., Adhikari, J. S. & Chaudhury, N. K. (2010). Lymphocyte chromosomal aberration assay in radiation biodosimetry. J. Pharm Bioallied Sci., 2(3), 197–201.
Akhadi, M. (2000). Dasar-dasar Proteksi Radiasi. PT Rineka Cipta.
Al-Salmani, K., Abbas, H. H. K., Schulpen, S., Karbaschi, M., Abdalla, I., Bowman, K. J., So, K. K., Evans, M. D., Jones, G. D. D., Godschalk, R. W., & Cooke, M. S. (2011). Simplified method for the collection, storage, and comet assay analysis of DNA damage in whole blood. Free Radical Biology and Medicine. 51(3): 719–725.
Alatas, Z. (2001, 03 April). Status mutakhir efek biologi radiasi. Buletin ALARA.
Albert, B., Johnson, A., Lewis, J. Raff, M., Roberts, K., & Walter, P. (2008). Molecular Biology of the Cell, 5-th ed. Garland Science.
Albertini, R. J., Anderson, D., Douglas, G. S., Hagmar, L., Hemminki, K., Merlo, F., Natarajan, A. T., Norppa, H., Shuker, D. E. G, Tice, R., Waters, M. D., & Aitio, A. (2000). IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety, Mutation Research, 463(2), 111-172.
Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2003). Essentials of Cell Biology, Edisi ke-empat. Garland Science.
Alsatari, E. S., Azab, M., Khabour, O. F., Alzoubi, K. H., & Sadiq, M. F. (2012). Assessment of DNA damage using chromosomal aberrations assay in lymphocytes of waterpipe smokers, Int. J. Occup Med Environ Health, 25(3), 218–224.
Alshedi, A. (2015). Radiation Units and Quantities, Third Lecture. Diakses pada 1 September 2022, dari https://slideplayer.com/slide/4472985/
Alsner, J., Høyer, M., Sørensen, S. B., & Overgaard, J. (2001). Interaction between potential doubling time and TP53 mutation: predicting radiotherapy outcome in squamous cell carcinoma of the head and neck. Radiation Oncology, Biology and Physics, 49(2), 519–525.
Amaral, A. (2002). Trends in biological dosimetry: An overview, Braz Arch Biol Technol, 45, 119–124.
American Cancer Society. (2019). Cancer Treatment and Survivorship Facts & Figures, RT. https://www.cancer.org/content/dam/CRC/PDF/Public/190.00.pdf
Andem, A. B., Agbor, R. B. & EKPO, I. A. (2013). Review of comet assay: a reliable tool for assessing DNA damage in animal models. Journal of Current Research Science, 1(6), 405–427.
Antonczyk, K. P., Elsasser, T. H., Nowak, E. G., & Schloz, G. T. (2009). Distribution of double strand breaks induced by ionizing radiation at the level of single DNA molecules examined by atomic force microsco- py. Radiation Research, 172, 288–295.
Asroel, H. A. (2002). Penatalaksanaan radioterapi pada KNF. USU Library, Medan.
Astiti, I. N., Anggraito, Y. U., & Syaifudin, M. (2018). Analisis tingkat kerusakan DNA pada sel limfosit perokok dan pon perokok akibat paparan radiasi gamma dengan teknik Comet assay. Life Science 7(1), 16–23.
Atencio, A., Grace, M., Bordens, R., Fritz, M., Horowitz, J. A., Hutchins, B., Indelicato, S., Jacobs, S., Kolz K., Maneval, D., Musco, M. L., Shinoda, J., Venook, A., Wen, S., & Warren, R. (2006). Biological activities of a recombinant adenovirus p53 (SCH 58500) administered by hepatic arterial infusion in a Phase 1 colorectal cancer trial. Cancer Gene Therapy, 13, 169–181.
Atomic Energy Regulation Boards. (2017). Myths & facts about radiation. Diakses September, 2022. https://aerb.gov.in/english/myths-facts-about-radiation
Aylon, Y. & Oren, M. (2011). New plays in the p53 theater. Curr Opin Genet Dev., 21, 86–92.
Azqueta, A. & Collins, A. R. (2013). The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Archive Toxicology, 87, 949–968.
Azqueta, A., Meier, S., Priestley, C., Gutzkow, K. B., Brunborg, G., Sallette, J. Soussalineand, F., & Collins, A. (2011). The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis, 26(3), 393-399.
Bakshi, U. A. & Godse, A. P. (2009). Basic Electronics Engineering. Technical Publications, pp. 8–10.
Balducci, L., Extermann, M., & Carreca, I. (2001). Management of breast cancer in the older woman. Cancer Control, 8(5), 431–441.
Barbacid, M. (1987). Ras gene, Annual Review of Biochemistry, 56, 779–827.
Barbosa, I. S., Magnata, S. P., Amaral, A., Sotero, G., & Melo, H. C. (2005). Dose assessment by quantification of chromosome aberrations and micronuclei in peripheral blood lymphocyte from patients exposed to gamma radiation. Genetics and Molecular Biology, 28, 452–457.
Barnes, J. L., Zubair M., John, K., Poirier, M. C., & Martin, F. L. (2018). Carcinogens and DNA damage. Biochemical Society Transactions, 46, 1213–1224.
Bartek, J. & Lukas, J. (2001). Are all cancer genes equal?. Nature, 411, 1001–1002.
Baskar, R., Ryo, H., Nakajima, H., Hongyo, T., Li, L.Y., Syaifudin, M., Si, X. E., & Nomura, T. (2002). Spontaneous and radiation-induced tumorigenesis in p53 deficient mice. International Congress Series, 1236, 115–118.
BATAN. (2005). Dasar Proteksi Radiasi dan Lingkungan. Pusdiklat.
Bazan, V., Migliavacca, M., Zanna, I., Tubiolo, C., Grassi, N., Latteri, M. A., La Farina, M., Albanese, I., Dardanoni, G., Salerno, S., Tomasino, R. M., Labianca, R., Gebbia, N., & Russo, A. (2002). Specific codon 13 K-ras mutations are predictive of clinical outcome in colorectal cancer patients, whereas codon 12 K-ras mutations are associated with mucinous histotype. Annals of Oncology, 13(9), 1438–1446.
Bedford, J. S. (1991). Sublethal damage, potentially lethal damage, and chromosomal aberrations in mammalian cells exposed to ionizing radiation. Int. J. Radiation Oncology Biol. Phys., 21, 1457–1469.
Beirnstein, S. E. (1962). Acute radiosensitivity in mice of differing W genotype. Science, 10, 428–429.
Besson, U., De Ambrosis, A., & Mascheretti, P. (2010). Studying the physical basis of global warming: Thermal effects of the interaction between radiation and matter and greenhouse effect. European Journal of Physics, 31(2), 375–388.
Best, T., Li, D., Skol, A.D., Kirchhoff, T., Jackson, S. A., Yasui, Y., Bhatia, S., Strong, L. C., Domchek, S.M., Nathanson, K. L., Olopade, O. I., Huang, R. H., Mack, T. M., Conti, D. V., Offit, K., Cozen, W., Robison, L. L., & Onel., K. (2011). Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin’s lymphoma. Nature Medicine, 17, 941–943.
Bianconi E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M.C., Tassani, S., Piva, F., Perez-Amodio, S., Strippoli, P., & Canaider, S. (2014). An estimation of the number of cells in the human body. Retrieved March 14, 2014. http://www.ncbi.nlm.nih.gov/pubmed/23829164
Bignold, L. P. (2015). Etio-Pathogenesis II, in: Principles of Tumors, A Trans- lational Approach to Foundations. Academic Press.
Biology Questions and Answers. (t.t). Structure of a Typical Animal Cell. Diakses 12 November, 2016, dari https://www.biology-questions-and-answers.com/images/Cell-Structure.jpg
Blakely, W.F., Prasanna, P. G., Grace, M. B., & Miller, A. C. (2001). Radiation exposure assessment using cytological and molecular biomarkers, Radiation Protection Dosimetry, 97(1), 17–23.
Boria, A.J. & Perez-Torres, C. J. (2020). Impact of mouse strain and sex when modeling radiation necrosis, Radiat Oncol. 15, 141.
Bourre, L. (2020). DNA Damage Response (DDR). Dipublish Juni, 2020, dari https://blog.crownbio.com/dna-damage-response
Bragado, P., Armesilla, A., Silva, A., & Porras, A. (2007). Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis, 12, 1733–1742.
Breimer, L. H. (1988). Ionizing radiation induced mutagenesis. British Journal of Cancer, 57, 6–18.
Bronchud, M. H. (2007). Molecular Oncology, In: Cancer From Mechanisms to Therapeutic Approaches, Edited by Robert A. Meyer, Wiley-VCH Verlag GmbH & Co. KgaA, Lakspur, CA. pp. 3–54.
Browning, K. S. & Bailey-Serres, J. (2015). Mechanism of Cytoplasmic mRNA Translation. Arabidopsis Book., 13, e0176.
Buchynska, L. G. & Nesina, I. P. (2006). Expression of the cell cycle regulators p53, p21 (WAF1/CIP1) and p16(INK4a) in human endometrial adenocarcinoma. Experimental Oncology, 28(2), 152–155.
Bushong, S. C. (2001). Radiologic Science for Technologist: Physics, Biology, and Protection, 7th ed. St. Louis, Missouri: Mosby, Inc.
Campbell, N. A., Reece, J. B., Lisa, A. U., Michael, L. C., Steven, A. W., Peter, V. M., & Robert, B. J., (2008). Biologi Edisi 8 Jilid 1. Penerbit Erlangga.
Campbell, N. A., Reece, J. B., Mitchell, L. G. (2002). Biology (6th ed.) (106–128). Benjamin Cummings.
Campbell, N. A., Williamson, B., & Heyden, R. J. (2006). Biology: Exploring Life, Pearson Prentice Hall, Boston, Massachusetts.
Catena, C., Conti, D., Parasacchi, P., Marenco, P., Bortolato, B., Botturi, M., Leoni, M., Portaluri, M., Paleani-Vettori, P. G., & Righi, E. (1996). Micronuclei in cytokinesis-blocked lymphocytes may predict patient response to radiotherapy. International Journal of Radiation Biology, 70(3), 301–308.
Chamary, J. V. (2019). A biologist explains: what is life?. Forbes. Diakses pada November 2021, dari https://www.forbes.com/sites/jvchamary/2019/03/27/what-is-life/?sh=7edaa861c778
Chen, C. H., Endlich, B., Salavati, R., & Ling, C. C. (1993). Presence of point mutations in the N-ras gene in radiation-transformed rat embryo cells. Cancer Research, 53, 1511–1515.
Choudhary, G. (2018). How to protect yourself from radiation. Cancer Therapy and Oncology International Journal, 12(3), 555836.
Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., & Croce, C. M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Nat Acad Sci USA, 102, 13944–13949.
Collins, A. (2002). in: In Situ Detecion of DNA Damage (Methods and Protocols), 1st ed., Didenko, V.V., The Comet Assay (Principles, Appli- cations, and Limitations). Humana Press.
Collins, A. R., Dušinská, M., & Horská, A. (2001). Detection of alkylation damage in human lymphocyte DNA with the comet assay. Acta Biochimica Polonica, 48, 611–614.
Collins, A. R., Duthie, S. J., & Dobson, V. L. (1993). Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, 14(9), 1733–1735.
Collins, A. R., Oscoz, A. A., Brunborg, G., Gaivao, I., Giovannelli, L., ÂKruszewski, M., Smith, C. C. & Stetina, R. (2008). The comet assay: topical issues. Mutagenesis, 23(3), 143–151.
Collins, T. J. (2007). ImageJ for microscopy, BioTechniques, 43, S25–S30.
Cooper, G. M. (2000). Chapter 14: The Eukaryotic Cell Cycle. In: The cell: a molecular approach (2nd ed.). Washington, D.C, ASM Press.
Cooper, G. M. (2000). The Cell, A Molecular Approach, 2nd edition. Boston University, Sunderland (MA): Sinauer Associates.
Corominas, M., Sloan, S. R., Leon, J., Kamino, H., Newcomb, E. W., & Pellicer, A. (1991). Ras activation in human tumors and in animal model systems. Environmental Health Perspective, 93, 19–25.
Crompton, N. E., Sigg, M. & Jaussi, R. (1994). Genome lability in Âradiation-induced transformants of C3H 10T1/2 mouse fibroblasts, Radiation Research, 138(1 Suppl), S105–S108.
Crosby, M. E. (2007). Cell Cycle: Principles of Control. Yale J. Biol Med. 80(3): 141–142.
Cucinotta, F. A., Kim, M. H., Willingham, V., & George, K. A. (2008). Physical and biological organ dosimetry analysis for international space station astronauts. Radiation Research, 170(1), 127–138.
Culotta, E. & Koshland, D. E. Jr. (1993). P53 sweeps through cancer research. Science, 262, 1958.
Curtis, R. A. (2016). Introduction to ionizing radiation, United States Department of Labor, 200 Constitution Ave., NW, Washington, DC. (Diunduh 12 November, 2016) https://www.osha.gov/SLTC/radiationionizing/introtoionizing/ionizinghandout.html.
Davis, A. J. & Chen, D. J. (2013). DNA double strand break repair via non-homologous end-joining. Transl Cancer Res., 2(3), 130–143.
Diamond, L. E., Guerrero, L. & Pellicer, A. (1988). Concomittant K- and N-ras gene mutations in clonal murine lymphomas. Molecular Cell Biology, 8, 2233–3336.
Donehower, L. A., Harvey, M., Slagle, B. I., McArthur, M. J., Montgomery, C.A. Jr., Butel, J., & Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature, 356, 215–221.
Dong, Y. L., Vadla, G.P., Lu, J. Y., Ahmad V., Klein, T. J., Liu, L. F., Glazer, P. M., Tian Xu, T., & Chabu, C. Y. (2021). Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance. Communications Biology, 4, 374.
Dons, R. F. & Cerveny, T. J. (1989). Triage and treatment of radiation injured mass casualities. Dalam: Walker, R. I., Cerveny, T. J. ed., Medical Consequences of Nuclear Warfare, TMM Publication, Maryland, 37–54.
Downing, G. J. (2000). Biomarkers and surrogate endpoints in clinical research: definitions and conceptual model, Dalam: Biomarker: Clinical Research and Applications (Downing, G. J. ed.). Elseiver. 1–9.
Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy, Nat. Rev. Cancer, 3(1), 11–22.
Dummer, R., Bergh, J., Karlsson, Y., Horowitz, J. A., Mulder, N. H., Huinink, D. T. B., Burg, G., Hofbauer, G., & Osanto, S. (2000). Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumors. Cancer Gene Therapy, 7, 1069–1076.
Duran, A., Barquinero, J. F., Caballin, M. R., Ribas, M., & Barrios, L. (2009). Persistence of radiation-induced chromosome aberrations in a longterm cell culture. Radiation Research, 171(4), 425–437.
Eastmond, D. A. & Tucker, J. D. (1989). Identification of aneuploidy-Âinducing agents using cytokinesis-blocked human lymphocytes and antikinetochore antibody. Environmental and Molecular  ÂMutagenesis, 13, 34–43.
Eisenstein, M. (2020). The secret life of cells. Nature Methods, 17, 7–10.
El-Deiry, W. S. (2016). p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Research, 76, 5189–5191.
Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4): 495–516.
Erexson, G. L., Kligerman, A. D., Bryant, M. F., Sontag, M. R., & Halperin, E. C. (1991). Induction of micronuclei by X radiation in human, mouse and rat peripheral blood lymphocytes. Mutation Research, 253(2), 193–198.
Erickson, K. L. & Gershwin, M. E. (1981). Hereditary athymic Asplenis Lasat mice, In: Immunologic Defects in Laboratory Animals 1 (ershwin, M.E. and Merchant, B. Eds). Plenum Press, 297–321.
Errol, C. F., Graham, C.W., Wolfram, S., Richard, D. W., Roger, A. S., & Tom, E. (2006). DNA Repair and Mutagenesis, Second Edition. ASM Press.
Faradiba, N. (2021, 1 Desember). Tujuan Perkembangbiakan Makhluk Hidup dan Jenisnya. Kompas. RT. https://www.kompas.com/sains/read/2021/09/19/163000823/tujuan-perkembangbiakan-makhluk-hidup-dan-jenisnya
Fenech, M. & Bonassi, S. (2011). The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis, 26, 43–49.
Fenech, M. (2007). Protocol cytokinesis block micronucleus cytome assay. Nature Protocols, 2(5), 1084–1104.
Fenech, M., Kirsch-Volders, M., Natarajan, A. T., Surralles, J., Crott, J. W., Parry, J., Norppa, H., Eastmond, D. A., Tucker, J. D., & Thomas, P. (2011). Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis, 26, 125–132.
Fenton, B. M., Lord, E. M., & Paoni, S. F. (2000). Enhancement of tumor perfusion and oxygenation by carbogen and nicotinamide during single and multi-fraction irradiation. Radiation Research, 153, 75–83.
Fisher, D. R. & Fahey, F. H. (2017). Appropriate use of effective dose in radiation protection and risk assessment. Health Phys. 113(2):102–109.
Fliedner, T. M. & Graessle, D. H. (2012). Hemopoietic response to low dose-rates of ionizing radiation shows stem cell tolerance and adaptation. Dose Response, 10(4), 644–663.
Fliedner, T. M., Nothdurft, W., & Steinbach, K. H. (1988). Blood cell changes after radiation exposure as an indicator for hemopoietic stem cell function. Bone Marrow Transplantation, 3, 77–84.
Formenti, S. C. & Demaria, S. (2013). Combining radiotherapy and cancer immunotherapy: A paradigm shift. Journal of National Cancer Institute, 105(4), 256–265.
Frankenberg-Schwager, M. (1990). Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells. Radiat. Environ. Biophys., 29, 273–292.
Fuerst, J. A. (2010). Beyond prokaryotes and eukaryotes: planctomycetes and cell organization. Nature Education, 3(9), 44.
Gamulin, M., Garaj-Vrhovac, V., & Kopjar, N. (2007). Evaluation of DNA damage in radiotherapy-treated cancer patients using the alkaline comet assay. Coll Antropol., 31(3), 837–845.
Gibbons, D. L., Byers, L., & Kurie, J. (2014). Smoking, p53 mutation, and lung cancer. Molecular Cancer Research, 12(1), 3–13.
Gilbert, S. (1991). Developmental biology. 3-rd ed. Sinauer Associaters, Inc. Massachusetts.
Giovanetti, A., Sgura, A., & Aversa, G., (2012). Biological dosimtery: how to measure the absorbed dose in different scenarios. Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome.
Golden, F. B. & Apetoh, L. (2015). Radiotherapy and Immunogenic Cell Death. Seminars in Radiation Oncology, 25(1), 11–17.
Gómez, G. D., Chávez, J. D., Blanco, A. C., Fierro, A. G., Salazar, J. E. J., ÂMatsumura, P. D., Quiroz, L. E. G., & González, A. D., (2015). Nicotinamide sensitizes human breast cancer cells to the cytotoxic effects of radiation and cisplatin. Oncology Reports, 33(2), 721–728.
Gonzalez, B. D., Curtis, R. E., Kry, S. F., Gilbert, E., Lamart, S., Berg, C. D., Stovall, M., & Ron, E. (2011). Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. Lancet Oncology,12(4), 353–360.
Gonzalez, J. E., Romero, I., Barquinero, J. F., & Garcia, O. (2012). Automatic Analysis of Silver-stained Comets by CellProfiler Software. Mutation Research, 748, 60-64.
Goodman, T. R. (2016). Ionizing radiation effects and their risk to humans. Yale University School of Medicine. New Haven, CT.
Goodsell, D. S. (1999). The molecular perspective: the ras oncogene. Oncologist, 4(3), 263–264.
Gospodarowicz, M. & O’Sullivan, B. (2003). Prognostic factors in cancer.Seminars in Surgical Oncology, 21(1), 13–18.
Graig, V. J., Adam, M. P., Myers, E. W., Lir, P. W., Mural, R. J., Sutton, G. G., Robert, A. E., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., ÂÂGocayne, J. D., Amanatides, P., Ballew, R. M., Huson, D. H., ÂWortman, J. R., Zhang, Q., Kodira, C. D., Zheng, X. H., … Zu, X. (2001). The sequence of the human genome. Science, 291, 1304–1351.
Gray, W. C., Hasslinger, B. J., Suter, C. M., Blanchard, C. L., Golstcin, A. L., & Chretien, P. B. (1986). Supression of cellular immunity by head and neck irradiation. Archive of Otolaryngol – Head and Neck Surgery, 112, 1185–1190.
Grosovsky, A. J., De Boer, J. G., De Jong, P. J., Drobetsky, E. A., & Glickman, B. W. (1988). Base substitution, frameshift, and small deletions Âconstitute ionizing radiation-induced point mutations in mammalian cells. Proc. Natl. Acad. Sci. USA, 85, 185–188.
Gupta, V., Sengupta, M., Prakash, J., & Tripathy, B. C. (2016). An Introduction to Biotechnology. Basic and Applied Aspects of Biotechnology, 1–21.
Hacker-Klon, U., Gohde, W., & Schumann, J. (1984). Mammalian spermatogenesis as a biological dosimeter for ionizing radiation, dalam: Biological Dosimetry (W. G. Eisert and M. L. Mendelsohn Ed.), Springer Verlag, Berlin, pp. 127–137.
Hall, E. J. & Giaccia, A. J. (2005) Radiobiology for radiologist, Edisi 6, J.B. Lippincott and Wilkins, Philadelphia.
Hall, E. J. & Giaccia, A. J. (2012). Radiobiology for the Radiologist, Edisi ke-tujuh, Lippincott Williams & Wilkins, Philadelphia USA.
Hall, E. J. & Wuu, C. S. (2003). Radiation-induced second cancer: the impact of 3D-CRT and IMRT. International Journal of Radiation Oncology, Biology, Physics, 56(1), 83–88.
Hartmann, A., Agurell, E., Beevers, C., Schwaab, S. B., Burlinson, B., Clay, P., Collins, A., Smith, A., Speit, G., Thybaud, V., & Tice, R. R. (2003). Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis, 18(1), 45–51.
Helma, C. & Uhl, M. (2000). A public domain image-analysis program for the single-cell gel-electrophoresis (comet) assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 466(1), 9–15.
Hongyo, T., Hoshida, Y., Aozasa, K. & Nomura, T. (2004). Gene mutations in second malignancies after radiotherapy. Proceeding of American Association on Cancer Research, 45.
Hopkins, A. M., Johnson, J., Lahart, S., Warner, D. Q., Wright, M., & Jill, D. (1997). Cells Building Blocks of Life, New Jersey: Prentice Hall.
Horváthová, E., Dušinská, M., Shaposhnikov, S., & Collins, A.R. (2004). DNA damage and repair measured in different genomic regions using the comet assay with fluorescent in situ hybridization. Mutagenesis, 19(4), 269–276.
Hoshida, Y., Hongyo, T., Xu, J. X., Sasaki, T., Tomita, Y., Nomura, T., & Aozasa, K. (2005). TP53 gene mutation, an unfavorable prognostic factor for malignant lymphomas in autoimmune diseases. Oncology, 69(2), 175–183.
Hursting, S., Perkins, S., Donehower, L., & Davis, B. (2001). Cancer prevention studies in p53 deficient mice. Toxicol. Pathol., 29, 137–141.
ICRP. (2007). The 2007 Recommendations of the international commission on radiological protection. Annals of the ICRP. ICRP Publication 103. 37(2–4).
Ide, H., Nakano, T., Shoulkamy, M. I., & Saleh, A. M. H. (2015). Formation, Repair, and Biological Effects of DNA–Protein Cross-Link Damage, in: Biochemistry, Genetics and Molecular Biology, Advances in DNA repair. Clark C. Chen eds.
International Atomic Energy Agency (IAEA). (2001). Cytogenetic analysis for radiation dose assessment. Technical Report Series no. 405, Vienna.
International Atomic Energy Agency (IAEA). (2010). Radiation Biology: A Hand- book for Teachers and Students. Vienna Austria. IAEA Publishing Center.
International Atomic Energy Agency (IAEA). (2011). Cytogenetic ÂDosimetry: Applications in Preparedness for and Response to Radiation Emergencies, Manual Series. https://www-pub.iaea.org/mtcd/publications/pdf/epr-biodosimetry%202011_web.pdf
International Atomic Energy Agency (IAEA). (2014). A Handbook for the Education of Radiation Therapists (RTTs). Vienna-Austria. IAEA Publication Center.
International Atomic Energy Agency (IAEA). (2020). Nuclear Technology Review 2020. Vienna-Austria. IAEA Publication Center.
International Commission on Radiological Protection (ICRP) Publication No. 60. (1990). Recommendations of the International Commission on Radiological Protection, Ann. ICRP, 21(1–3), Pergamon Press, Oxford.
International Commission on Radiological Protection (ICRP). (2012). Recommendations of the International Commission on Radiological Protection. ICRP Publication 119, Annals of the ICRP, 60.
International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.
Israel, L., (1978). Conquering Cancer, Random House, New York, p. 95.
Iyama, T., & Wilson, D. M. (2013). DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). 12(8): 620–636.
Jelveh, S. & Chithrani, D. B. (2011). Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers, 3(1), 1081–1110.
Joksic, G., Nikolic, A., & Spasojevic-Tisma, V. (1997). Radiosensitivity of different aged human lymphocytes following electron irradiation in vitro. Neoplasma, 44(2), 117–121.
Jones, I. M., Tucker, J. D., Langlois, R. G., Mendelsohn, M. L., Pleshanov, P., & Nelson, D. O. (2001). Evaluation of three somatic genetic biomarkers as indicators of low dose radiation effects in clean-up workers of the Chernobyl nuclear reactor accident. Radiation Protection Dosimetry, 97(1), 61–67.
Juhl, J. H., Crummy, A. B., & Kuhlman, J. E. (1998). Essentials of Radiologic Imaging, 7th ed. Philadelphia, PA. Lippincott-Raven Publishers.
Jumpeno, E. B. (2006). Sistem manajemen keselamatan radiasi. Buletin ALARA, PT KMR BATAN Volume 8 Nomor 1 (edisi Agustus), 37–42.
Kamus Besar Bahasa Indonesia. (2016). Diakses 2016, http://kbbi.web.id/radiasi.
Kanda, R. (2000). Improvement of accuracy of chromosome aberration analysis for biological radiation dosimetry. Journal of Radiation Research, 41, 1–8.
Kanda, R., Hayata, J., & Lloyd, D. C. (1999). Easy biodosimetry for high-dose radiation exposures using drug induced, prematurely condensed chromosomes. International Journal of Radiation Biology, 75, 441–446.
Kara, P., Dagdeviren, K., & Ozsoz, M. (2007). An electrochemical DNA biosensor for the detection of DNA damage caused by radioactive iodine and technetium. Turkish Journal of Chemistry, 31(3), 243–249.
Kementerian Kesehatan RI. (2015). Stop Kanker. Pusat Data dan Informasi. Kementerian Kesehatan RI. (2019). Beban Kanker di Indonesia. (2019). Pusat Data dan Informasi.
Kentjono, W. A. (2004). Komparasi respons tumor terhadap radiasi antara radioterapi dengan radioterapi plus vaksinasi BCG pada karsinoma nasofaring. Jurnal Kedokteran Yarsi, 12(3), 7–16.
Kerbel, R. S. (2000). Tumor angiogenesis: past, present and the near future, Carcinogenesis, 21(3), 505–515.
Khan, R. F., Rink, W. J., & Boreham, D. R. (2003). Biophysical dose measurement using electron paramagnetic resonance in rodent teeth. Application of Radiation and Isotopes, 59(2–3), 189–196.
Khanna, K. K. & Jackson, S. P. (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genetics, 27(3), 247–254.
Kim, S. H., Kim, J. H., & Fried, J., (1973). Enhancement of the radiation response of cultured tumor cells by chloroquine. Cancer, 32, 536–540.
Kim, S. R., Kim, T. H., Ryu, S. Y., Lee, H. J., Oh, H., Jo, S. K., Oh, K. S., Park, I. C., Kim, J. C., Kang, C. M., & Kim, S. H. (2003). Measurement of micronuclei by cytokinesis-block method in human, cattle, goat, pig, rabbit, chicken and fish peripheral blood lymphocytes irradiat ed in vitro with gamma radiation. In Vivo, 17(5), 433–438.
Kleinerman, R. A., Romanyukha, A. A., Schauer, D. A., & Tucker, J. D. (2006). Retrospective assessment of radiation exposure using biological dosimetry: chromosome painting, electron paramagnetic resonance and the glycophorin a mutation assay. Radiation Research, 166(1 Pt 2), 287–302.
Knoll, G. F. (1989). Radiation Detection and Measurement, John Wiley & Sons.
Kodama, Y., Pawel, D., Nakamura, N., Preston, D., Honda, T., Itoh, M., Nakano, M., Ohtaki, K., Fumamoto, S., & Awa, A. A. (2001). Stable chromosome aberrations in atomic bomb survivors: results from 25 years of investigation. Radiation Research, 156(4), 337–346.
Koksal, G., Lloyd, D. C., Edwards, A. A., & Prosser, J. S. (1989). The dependence of the micronucleus yield in human lymphocytes on culture and cytokinensis blocking times. Radiation Protection Dosimetry, 29(3), 209–212.
Komisi Proteksi Radiasi Kawasan Nuklir Serpong (KPR-KNS) BATAN. (2011). Pedoman Keselamatan dan Proteksi Radiasi Kawasan Nuklir Serpong, Revisi I, 14–42.
Konca, K., Lankoff, A., Banasik, A., Lisowska, H., Kuszewski, T., Gozdz, S., Koza, Z., & Wojcik, A. (2003). A cross-platform public domain PC image-analysis program for the comet assay. Mutation Research, 534, 15–20.
Kondo, S. (1993). Health effects of low-level radiation. Kinki University Press, Osaka, Japan; Medical Physics Publishing, Madison USA.
Kong, X., Yu, D., Wang, Z., & Li, S. (2021). Relationship between p53 status and the bioeffect of ionizing radiation (Review). Oncology Letters, 22(3), 661.
Krengel, U., Schlichting, I., Scherer, A., Schumann, R., Frech, M., John, J., Kabsch, W., Pai, E. F., & Wittinghofer, A. (1990). Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell, 62, 539–548.
Kruse, J. P., & Gu, W. (2009). Modes of p53 regulation, Cell, 137(4), 609–622.
Kuball, J., Wen, S. F., Leissner, J. Atkins, D., Meinhardt, P., Quijano, E., Engler, H., Hutchins, B., Maneval, D. C., Grace, M. J., Fritz, M. A., Störkel, S., Thüroff, J. W., Huber, C., & Schuler, M. (2002). Successful Adenovirus-mediated Wild-type p53 Gene Transfer in Patients with Bladder Cancer by Intravesical Vector Instillation. Journal of Clinical Oncology, 20, 957–965.
Kumaravel, T. S. & Jha, A. N. (2006). Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutation Research, 605(1–2), 7–16.
Lamadrid, A. I., Garcia, O., Delbos, M., Voisin, P., & Roy, L. (2007). PCC-ring induction in human lymphocytes exposed to gamma and neutron irradiation. Journal of Radiation Research, 48, 1–6.
L’anunziata, M. (2014). Handbook of radioactivity analysis. Elseiver Sci- ences, p. 58.
Larson, B. (Ed.). (2012). Interaction of radiation with matter. Dari http:// www.ndt-ed.org/EducationResources/CommunityCollege/Radiog-raphy/Physics/radmatinteraction.htm.
Le Roux, J., Slabbert, J., Smith, B., & Blekkenhorst, G. (1998). Assessment of the micronucleus assay as a biological dosimeter using cytokinesis-blocked lymphocytes from cancer patients receiving fractionated partial body-radiotherapy. Strahlenther Onkology, 174(2), 75–81.
Leblanc, J. E. & Burtt, J. J. (2019). Radiation biology and its role in the canadian radiation protection framework. Health Physics, 117(3), 319–329.
Lee, J. M. & Bernstein, A. (1993). p53 mutations increased resistance to ionizing radiation. Proceeding of National Academy of Sciences USA, 90, 5742–5746.
Lee, T. K., Allison, R. R., O’brien, K. F., Naves, J. L., Karlsson, U. L., & Wiley, A. L., Jr. (2002). Persistence of micronuclei in lymphocytes of cancer patients after radiotherapy. Radiation Research, 157, 678–684.
Lehnert, S. (2008). Biomolecular action of ionizing radiation, Taylor and Francis.
Leminen, A., Paavonen, J., Forss, M., Wahlrtrom, T., & Vesterine. (1990). Adenocarcinoma of the uterine cervix. Cancer, 65, 53–59.
Lesmono, S. (2015). Prinsip Dasar Pengukuran Radiasi. Diakses pada 1 November 2016, dari https://docplayer.info/18011-Prinsip-dasar-pengukuran-radiasi.html
Levine, A. J. & Oren, M. (2009). The first 30 years of p53: growing ever more complex. Nature Review Cancer, 9, 749–758.
Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell, 88, 323–331.
Li, G. M. (2008). Mechanisms and functions of DNA mismatch repair. Cell Research,18, 85–98.
Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., & Zhao, X. (2020). Applica- tions of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 5, 1.
Li, T., Hongyo, T., Syaifudin, M., Nomura, T., Dong, Z., Shingu, N., Kojya, S., Nakatsuka, S., & Aozasa, K. (2000). Mutations of the p53 gene in nasal NK/T-cell lymphoma. Laboratory Investigation, 80(4), 493–499.
Li, W. (2011). On parameters of the human genome. Journal of Theoretical Biology, 288, 92–104.
Lilley, J. (2001). Nuclear Physics: Principles and Applications. John Wiley & Sons.
Lingahl, T. & Barnes, D. E. (2000). Repair of endogenous DNA damage. Cold Spring Harb Symp. Quant. Biol., 65, 127–133.
Liu, Q., Cao, J., Wang, Z. Q., Bai, Y. S., Lü, Y. M., Huang, Q. L., Zhao, W. Z., Li, J., Jiang, L. P., Tang, W. S., Fu, B. H., & Fan, F. Y. (2009). Dose estimation by chromosome aberration analysis and micronucleus assays in victims accidentally exposed to 60Co radiation. British Journal of Radiology, 82(984), 1027–1032.
Livingston, G. K., Foster, A. E., & Elson, H. R. (1993). Effect of in vivo exposure to iodine-131 on the frequency and persistence of micronuclei in human lymphocytes. Journal of Toxicology and Environmental Health, 40(2–3), 367–375.
Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular Cell Biology, 4th edition., New York: W. H. Freeman.
Loeb, K. R. & Loeb, L. A. (2000). Significance of multiple mutations in cancer. Carcinogenesis, 21(3), 379–385.
Lomax, M. E., Folkes, L. K., & O’neill, P. (2013). Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clinical Oncology, 25(10), 578–585.
Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A., & Jacks, T. (1993). P53 is required for radiation-induced apoptosis in mouse thymocytes. Nature, 362, 847–849.
Lusiyanti, Y., Alatas, Z., & Syaifudin, M. (2015). Lack of radioprotective potential of ginseng in suppressing micronuclei frequency in human blood lymphocyte under gamma irradiation. Hayati Journal of Biosciences, 22(2), 93–97.
Lusiyanti, Y., Alatas, Z., Lubis. M., Suvifan, V.A., Ramadhani, D., & Pur- nami, S. (2013). Dose response curve of chromosome aberrations in human lymphocytes induced by X-rays. Atom Indonesia, 38(3), 124–128.
Lutzker, S. G. & Levine, A. J. (1996). A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nature Medicine, 2, 804–810.
Maebayashi, K., Mitsuhashi, N., Takahashi, T., Sakurai, H., & Niibe, H. (1999). p53 mutation decreased radiosensitivity in rat yolk sac tumor cell lines. International Journal of Radiation Oncology, Biological Physics, 44, 677–682.
Malu, S., Malshetty, V., Francis, D., & Cortes, P. (2012). Role of non-homologous end joining in V(D)J recombination. Immunology Research, 54, 233–246.
Mason, K. A., Hunter, N. R., Milas, M., Abbruzzese, J. L., & Milas, L. (1997). Docetaxel enhances tumor radioresponse in vivo. Clinical Cancer Research, 3, 2431–2438.
Mayr, G. A., Reed, M., Wang, P., Wang, Y., Schwedes, J. F., & Tegymeyer, P. (1995). Serine Phosphorylation in the NH2 Terminus of p53 Facilitates Transactivation. Cancer Research, 55, 2410–2417.
Mc.Kusick, V.A. (2000). On-line Mendelian inheritance in man (OMIM) National Center for Biotechnology Information. Nat Inst of Health.
McBride, W. H., Chiang, C. S., Olson, J. L., Wang, C. C., Hong, J. H., Pajonk, F., Dougherty, G. J., Iwamoto, K. S., Pervan, M., & Liao, Y. P. (2004). A sense of danger from radiation. Radiation Research, 162, 1–9.
McDarby, M. (2009–2015). Introduction to Biology, Molecules and Cells., 2009–2015.
Medlineplus. What is a Chromosome?. (1 November, 2016). RT. https://medlineplus.gov/genetics/understanding/basics/chromosome/.
Miller, C., Mohandas, T., Wolf, D., Prokocimer, M., Rotter, V., & Koeffler, H. P. (1986). Human p53 gene localized to short arm of chromosome 17. Nature, 319, 783–784.
Mitchell, J. B., Russo, A., Cook, J. A., Straus, K. L., & Glatstein, E. (1989). Radiobiology and clinical application of halogenated pyrimidine radiosensitizers. International Journal of Radiation Biology, 56(5), 827–836.
Mitsuhashi, N., Takahashi, T., Sakurai, H., Nozaki, M., Akimoto, T., ÂHasegawa, M., Saito, Y., Matsumoto, H., Higuchi, K., Maebayashi, K., & Niibe, N. (1996). A radioresistant variant cell line, NMT-1R, isolated from a radiosensitive rat yolk sac tumour cell line, NMT-1: ÂDifferences of early radiation-induced morphological changes, especially apoptosis. International Journal of Radiation Biology, 69, 329–336.
Moding, E. J., Kastan, M. B., & Kirsch, D. G. (2013). Strategies for optimizing the response of cancer and normal tissues to radiation. Nature Review of Drug Discovery, 12(7), 526–542.
Mohammadi, S., Dehaghani, M. T., Gharaati, M. R., Masoomi, R., & Nejad, M. G. (2006). Adaptive response of blood lymphocytes of inhabitants residing in high background radiation areas of Ramsar-micronuclei, apoptosis and Comet assays. Journal of Radiation Research, 47, 279–285.
Monti, P., Menichini, P., Speciale, A., Cutrona, G., Fais, F., Taiana, E., Neri, A., Bomben, R., Gentile, M., Gattei, V., Ferrarini, M., Morabito, F., & Fronza, G. (2020). Heterogeneity of TP53 mutations and P53 protein residual function in cancer: does it matter?, Frontiers in Oncology, 10, 3389.
Muller, W. U. & Streffer, C. (1991). Biological indicators for radiation damage, International Journal of Radiation Biology, 59, 863–873.
Mulyadi, B. (1998). Cancer Control Programme in Indonesia. Ministry of Health. Presented at the 4th Continuing Medical Education on Early Detection and Prevention of Cancer. Medical Faculty, University of Indonesia, Jakarta, September 23–25.
Naderi, N. J. (2018). Reporting an experience: improving the feulgen staining technique for better visualizing of nucleus. Iranian Journal of Pathology, 13(1), 106–107.
Nadin, S. B., Roig, L. M. V., & Ciocca, D. R. (2001). A Silver staining method for single-cell gel assay. The Journal of Histochemistry & Cytochemistry, 49(9), 1183–1186.
Natarajan, A. T. & Kesavan, P. (2005). Cytogenetics for dosimetry in cases of radiation accidents and assessing the safety of irradiated food material. Current Science, 89(2), 360–365.
National Library of Medicine. (2021). What is a chromosome?. MedlinePlus. https://medlineplus.gov/genetics/understanding/basics/chromosome/
Newmeyer, D. D. & Ferguson, M. S. (2003). Mitocondrial releasing power for life and unleashing the machineries of death. Cell 112, 481–490.
Nikjoo, H., Uehara, S., & Ewfietzoglou, D. (2012). Radiation Interactions with Matter, Taylor & Francis Group, Boca Raton, FL, pp. 544.
Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in Cancer. Vascular Health and Risk Management, 2(3), 213–219.
Nosaki, M. (1992). Biological and histological characteristics of experimental yolk sac tumor developed by fetectomy and their usefulness in radiotherapeutic experiments, J. Jpn. Soc. Ther. Radiat. Oncol. 4, 33–43.
Nurhayati, S., Syaifudin, M., Lusiyanti, Y., & Lubis, M. (1994). Efek substan protektif sistein dan ampisilin terhadap kandungan glukosa darah tikus sehat dan diiradiasi gamma. Prosiding Seminar Aplikasi Isotop dan Radiasi. PAIR BATAN.
Olive, P. L. & Banath, J. P. (2006). The comet assay: a method to measure DNA damage in individual cells. Nature Protocol, 1(1), 23–27.
Ono, K., Kim, O. O., & Han, J. (2003). Susceptibility of lysosomes to rupture is determinant for plasma membrane disruption in tumor necrosis factor alpha-induced cell death. Mol. Cell Biol., 23, 665–676.
Ostrander, E.A. (2023). Cancer. National Human Genome Institute. https://www.genome.gov/genetics-glossary/Cancer
Pajonk, F., Vlashi, E., & McBride, W. H. (2010). Radiation Resistance of Cancer Stem Cells: The 4 R’s of Radiobiology Revisited. Stem Cells, 28(4), 639–648.
Pantelias, G. E. & Maillie, H. D. (1984). The use of peripheral blood mono- nuclear cell prematurely condensed chromosomes for biological dosimetry. Radiation Research, 99, 140–150.
Paumier, A. & Le Péchoux, C. (2013). Post-operative radiation therapy. Translation Lung Cancer Research, 2(5), 423–432.
Pedersen-Bjergaard, J., Pedersen, M., Myhre, J., & Geisler, C. (1997). High risk of therapy-related leukemia after BEAM chemotherapy and autologous stem cell transplantation for previously treated lymphomas is mainly related to primary chemotherapy and not to the BEAM-transplantation procedure. National Library of Medicine. 11(10), 1654–1660.
Peraturan Kepala Badan Pengawas Tenaga Nuklir Nomor 4 Tahun 2013 tentang Proteksi dan Keselamatan Radiasi dalam Pemanfaatan Tenaga Nuklir. (2013). https://elira.batan.go.id/asset/download/Peraturan%20Kepala%20Badan%20Pengawas%20Tenaga%20Nuklir%20Nomor%204%20Tahun%202013%20Tentang%20Proteksi%20dan%20Keselamatan%20Radiasi%20Dalam%20Pemanfaatan%20Tenaga%20Nuklir.pdf
Peraturan Kepala BAPETEN No.01/Ka-BAPETEN/I-10 tentang Kesiapsiagaan dan Penanggulangan Kedaruratan Nuklir. (2011). https://jdih.bapeten.go.id/unggah/dokumen/peraturan/67-full.pdf
Peraturan Pemerintah Republik Indonesia No. 58 tahun 2015 tentang Keselamatan Radiasi dan Keamanan dalam Pengangkutan Zat Radioaktif. (2015). https://jdih.bapeten.go.id/ unggah/dokumen/peraturan/333-1_(PERATURAN)-1557815343. pdf.
Pérez-Mancera, P. A. & Tuveson, D. A. (2006). Physiological analysis of oncogenic K-ras. Methods in Enzymology, 407, 676–690.
Pierce, B. A. (2010). Genetics: A Conceptual Approach, 5-th edition. W.H. Freeman & Company.
Podgorsak, E. B. (2005). Radiation Oncology Physics: a handbook for teachers and students. International Atomic Energy Agency.
Pollard, T. D., Earnshaw, W. C., Schwartz, J. L., & Johnson, G. T. (2017). Cell ÂBiology (Third Edition) (317–350). Elsevier Inc.
Potten, C. S., Geng, L., & Taylor, P. (1990). Hair medullary cell counts: a simple and sensitive indicator of radiation exposure. International Journal of Radiation Biology, 57, 13–21.
Prasad, K. N. (1995). Handbook of Radiobiology (Second edition), CRC Press.
Prieur-Carillo, G., Chu, K., Lindovist, J., & Dewey, W.C. (2003). Computerized video time-lapse (CVTL) analysis of the fate of giant cells produced by x-irradiating EJ30 human bladder carcinoma cells. Radiation Research, 159, 705–712.
Purnami, S. (2015). Perkembangan teknik fluorescence in situ hybridization (fish) di BATAN sebagai biodosimetri dan prediksi risiko akibat paparan radiasi. Buletin ALARA. 17(1): 1–7.
Purwanto, R., Retnowati, E., Sofyan, J.F., Dewi, N.K., Yestina, R., & Daniati, I. (2016). Top No 1 UN SMP/MTS 2016 Seri Pendalaman Materi, PT. Bintang Wahyu, hlm. 284.
Putra, D. (2010). Pengolahan Citra Digital. Andi.
Radiologypics. (2015). Radiology Physics – Deterministic effects. Diakses 20 Juni 2016, dari https://radiologypics.com/2015/06/03/radiology-physics-deterministic-effects/
Ramadhani, D., Purnami, S., & Tetriana, D. (2014). Deteksi kerusakan deoxyribonucleic acid (DNA) pada sel limfosit darah tepi manusia akibat paparan radiasi pengion dengan teknik tes komet (Comet assay). Buletin ALARA, 16(2).
Ramadhani, D., Tetriana, D., & Suvifan, V. A. (2016). Optimalisasi tes komet untuk penentuan tingkat kerusakan DNA akibat paparan radiasi pengion. Jurnal Sains dan Teknologi Nuklir Indonesia. 17(1): 37–48.
Ramsay, J., Ward, R., & Bleehen, N. M. (1992). Radiosensitivity testing of human malignant gliomas. International Journal of Radiation Oncology, Biology, Physics, 24, 675–680.
Rana, S., Kumar, R., Sultana, S., & Sharma, R. K. (2010). Radiation-induced biomarkers for the detection and assessment of absorbed radiation dose, J. Pharm Bioallied Sci., 2(3), 189–196.
Rao, B. S. & Natarajan, A. T. (2001). Retrospective biological dosimetry of absorbed radiation. Radiation Protection Dosimetry, 95, 17–23.
Rao, S. S. (2018). Chapter 13-Formulation and Solution Procedure. The Finite Element Method in Engineering (Sixth edition) (505–522). Butterworth-Heinemann.
Rastogi, R. P., Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of Nucleic Acids, 592980.
Rasyid, A., (2000). Karsinoma nasofaring: penatalaksanaan radioterapi, Majalah Kedokteran Nusantara, XXXIII (1), 52–58.
Ricoul, M., Gnana-Sekaran, T., Piqueret-Stephan, L., & Laure Sabatier, L. (2017). Cytogenetics for Biological Dosimetry. Methods in Molecular Biology, 1541, 189–208.
Riesterer, O., Honer, M., Jochum, W., Oehler, C., Ametamey, S., & Pruschy, M. (2006). Ionizing radiation antagonizes tumor hypoxia induced by antiangiogenic treatment. Clinical Cancer Research, 12, 3518–3524.
Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer, 2(4), 466–474.
Robinson, T. R. (2010). Genetics for Dummies, 2nd Ed. Wiley Publishing.
Rogers, J. (2012). Excitation and Ionization. Diakses pada 1 September 2022. dari https://prezi.com/rivftlhfn-ml/excitation-ionisation/
Rojas, E., Lopez, M.C., & Valverde, M. (1999). Single cell gel electrophoresis assay: methodology and applications. Journal of Chromatography B, 722, 225–254.
Rosin, M. P. & Ochs, H. D. (1986). In vivo chromosomal instability in ataxia-telangiectasia homozygotes and heterozygotes. Human Genetics, 74, 335–340.
Rossenfeld, C. (t.t.). Effects of Radiation on the Human Body. Diakses 11 Maret 2016. http://www.atomicarchive.com/Effects/radeffects.shtml.
Rubbi, C. P. & Milner, J. (2007). P53: gatekeeper, caretaker or both?, In: 25 Years of p53 Research (P. Hainant and KG. Wiman eds), Springer, pp. 232–253.
Rukstalis, D. B. (2002). Treatment options after failure of radiation therapy—a review. Review of Urology, 4(Suppl 2), S12–S17.
Sachs, R. K., Chan, M., Hlatky, L., & Hahfeldt, P. (2005). Modeling intercellular interactions during carcinogenesis, Radiation Research, 164, 324–331.
Sachs, R. K., Chen, A. M., & Brenner, D. J. (1997). Review: proximity effects in the production of chromosome aberration by ionizing radiation. International Journal of Radiation Biology, 71(1), 1–19.
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaçmaz, K., & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73, 39–85.
Sankaranarayanan, K. & Chakraborty, R. (1995). Cancer Predisposition, Radiosensitivity and the Risk of Radiation-induced Cancer I. Background. Radiation Research, 143, 121–123.
Sasai, K., Evans, J. W., Kovacs, M. S., & Brown, J. M. (1994). Prediction of human cell radiosensitivity: comparison of clonogenic assay with chromosome aberrations scored using premature chromosome condensation with fluorescence in situ hybridization. International Journal of Radiation Oncology, Biology, and Physics, 30(5), 1127–1132.
Sawey, M. J., Hood, A. T., Burns, F. J., & Garte, S. J. (1987). Activation of c-myc and c-K-ras oncogenes in primary rat tumors induced by ionizing radiation. Moleculare dan Cellular Biology, 7(2), 932–935.
Schaffer, M., Ertl-Wagner, B., Schaffer, P. M., Kulka, U., Hofstetter, A., Duhmke, E., & Jori, G. (2003). Porphyrins as radiosensitizing agents for solid neoplasms. Current Pharmaceutical Design, 9(25), 2024–2035.
Schatz, G. (2007). The magic garden. Annu. Rev. Biochem., 76, 673–678.
Schuler, M., Herrmann, R., De Greve, J. L. P., Stewart, A. K., Gatzemeier, U., Stewart, D. J., Laufman, L., Gralla, R., Kuball, J., Buhl, R., He- ussel, C. P., Kommoss, F., Perruchoud, A. P., Shepherd, F.A., Fritz, M. A., Horowitz, J. A., Huber, C., & Rochlitz, C. (2001). Adenovirus-Mediated Wild-Type p53 Gene Transfer in Patients Receiving Chemotherapy for Advanced Non–Small-Cell Lung Cancer: Results of a Multicenter Phase II Study. Journal of Clinical Oncology, 19(6), 1750–1758.
Seong, C. H., Kiat, Y. S., Qinwei, X., Hai, C. Z. C., Zee, W. L. (t.t.). Types of DNA Damage. Diakses pada 1 November 2016, dari https://sites.google.com/site/bi6101dnarepair/damage-detection-response/typesof-dna-damage
Simon, S.L., Bouville, A., & Kleinerman, R. (2010). Current use and future needs of biodosimetry in studies of long-term health risk following radiation exposure. Health Physics, 98(2), 109–117.
Singh, N. P., Mccoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191.
Singh, N. P. & Khan, A. (1995). Acetaldehyde: genotoxicity and cytotoxicity in human lymphocytes. Mutation Research, 337(1), 9–17.
Slowinski, J., Bierzynska-Macyszyn, G., Mazurek, U., Widel, M., Latocha, M., Stomal, M., Snietura, M., & Wrowka, R. (2004). Cytokinesis block micronucleus assay in human glioma cells exposed to radiation. Image Anal Stereol., 23, 159–165.
Solomon, E. P., Berg, L. R., & Martin, D. W. (2002). Biology. Edisi 6, Brooks/ Cole Thompson Learning, USA.
Solomon, V. R. & Lee, H. (2009). Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. European Journal of Pharmacology, 625, 220–233.
Sorger, T., Vaslet, C. A., Marsella, J. M., & Kane, A. B. (1996). Spontaneous p53 mutation increases sensitivity of murine mesothelial cells to DNA damage induced by asbestos and ionizing radiation. Lung Cancer, 15(2), 263–263.
Soussi, T. & Beroud, C. (2003). Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Human Mutation, 21, 192–200.
Soussi, T. (2010). The history of p53: A perfect example of the drawbacks of scientific paradigms. EMBO Reports, 11(11), 822–826.
Sprawls, P. (2016). Energy and Radiation. Diakses 12 November, 2016, dari http://www.sprawls.org/ppmi2/ERAD/
Steeg, P. S. (2006). Tumor metastasis: mechanistic insights and clinical challenges. Nature Medicine, 12(8), 895–904.
Stephens, T. & Pantridge, K. (2011). Dosimetry, personal monitoring film. Philosophy of Photography, 2(1), 153–158.
Suhartati, G. (1999). Terapi radiasi dalam penanganan penyakit keganasan. Buku Kursus penyegaran ke-V dan Lokakarya pencegahan dan deteksi dini penyakit keganasan. FKUI Jakarta, 19–29.
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.
Surjana, D., Halliday, G.M., & Damian, D. L. (2010). Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair. Journal of Nucleic Acids, 2010, 157591.
Susilawati & Bachtiar, N. (2018). Biologi Dasar Terintegrasi. Pekan baru: Kreasi Edukasi. hlm. 12.
Suzuki, M., Nakamatsu, K., Kanamori, S., Masunaga, S.I., & Nishimura, Y. (2003). Additive effects of radiation and docetaxel on murine SC- CVII tumors in vivo: special reference to changes in the cell cycle. Radiation Research, 159, 799–804.
Suzuki, Y., Nakano, T., Arai, T., Kato, S., Niibe, Y., Morita, S., & Tsujii, H. (2000). Progesterone receptor is a favorable prognostic factor of radiation therapy for adenocarcinoma of the uterine cervix. Int J Radiat Oncol. Biol Phys, 47, 1229–1234.
Syahrum, M. H., Suhana, N., Sudarmo, S., Tjokronegoro, A., & Hendrikus, H. (1984). Pengaruh radiasi terhadap system pertahanan tubuh seluler pada penderita kanker nasopharynx. Majalah Kedokteran Indonesia, 34(5), 219–224.
Syaifudin, M. & Lusiyanti, Y. (2014). Prosiding Seminar Nasional Keselamatan Kesehatan dan Lingkungan IX: Urgensi Studi Efek Sitogenetik pada Penduduk yang Tinggal di Daerah dengan Paparan Radiasi Alam Tinggi (203–214). BATAN. http://repo-nkm.batan.go.id/9675/1/URGENSI%20MAMUJU.pdf
Syaifudin, M, Purnami, S., Rahardjo, T., Kurnia, I., Rahajeng, N., Darlina, D., Nurhayati, S., Ramadhani, D., & Pudjadi, E. (2018). Cytogenetic and molecular damages in blood lymphocyte of inhabitants living in high background radiation area of Botteng Village, Mamuju, West Sulawesi. Radiation Environment Medicine (REM), 7(2).
Syaifudin, M. (2008). Pemanfaatan teknik Premature Chromosome Condensation and uji mikronuklei dalam dosimetri biologi. Prosiding Seminar Nasional Keselamatan, Kesehatan dan Lingkungan IV dan International Seminar on Occupational Health and Safety I, 61–66.
Syaifudin, M. (2012). Perubahan molekuler gen penekan tumor p53 akibat pajanan radiasi pengion. Jurnal Forum Nuklir, 6(1), 20–28.
Syaifudin, M. (2005). Gen p53 sebagai pelindung integritas genome manusia. Journal Medika, XXXI, 625–630.
Syaifudin, M. (2006). P53 gene mutation as biomarker of radiation induced cell injury and genomic instability. Atom Indonesia, 32(2), 103–116.
Szumel, I. (1994). Ionizing radiation-induced cell death. Int. J. Radiat Biol., 66(4), 329–341.
Taleei, R. & Nikjoo, H. (2013). The Non-homologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks: i. a mathematical model. Radiation Research, 179(5), 530–539.
Taylor, J. A., Watson, M. A., Devereux, T. R., Michels, R. Y., Saccomanno, G., & Anderson, M. (1994). P53 mutation hotspot in radon-associated lung cancer. Lancet, 343, 86–87.
Tetty, S. (2007). Biologi Interakif kelas XII. Azka Press.
Thacker, J. (1992). Radiation-induced mutation in mammalian cells at low doses and dose rates. Advances in Radiation Biology, 16, 77–124.
Thariat, J., Hannoun-Levi, J.M., Sun Myint, A., Vuong, T., & Gerard, J. P. (2013). Past, present, and future of radiotherapy for the benefit of patients. Nature Review Clinical Oncology, 10, 52–60.
The TP53 Website. (2022). P53 gene. Diakses 18 Oktober 2022, dari http://p53.free.fr/p53_info/p53_gene.html
The 1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526, 68–74.
The Basic Structural and Functional Unit of Life: The Cell. (2019). Li- breTexts.
The International Commission on Radiological Protection (ICRP). (2003).Annals of the ICRP: Early and late effects of radiation in normal tissues and organs: threshold doses for tissue reactions and other non-cancer effects of radiation in a radiation protection context, The International Commission on Radiological Protection.
Thomas, P., Umegaki, K., & Fenech, M. (2003). Nucleoplasmic bridges are a sensitive measure of chromosome rearrangement in the cytokine- sis-block micronucleus assay. Mutagenesis, 18(2), 187–194.
Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., ÂKobayashi, H., Miyamae, Y., Rojas, E., Ryu, C. J., & Sasaki, Y. F. (2000). Single cell gel/Comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis, 35, 206–221.
Tjindarbumi, D. & Mangunkusumo, R. (2002). Cancer in Indonesia, present and future. Japanese Journal of Clinical Oncology, 32(suppl 1), S17–S21.
Tjokronagoro, S. M. (2004, 24 April). Peranan radioterapi dalam penaggulangan penyakit kanker. Pidato Pengukuhan Jabatan Guru Besar pada Fakultas Kedokteran Universitas Gadjah Mada Yogyakarta.
Tomilin, N. V. (2008). Regulation of mammalian gene expression by retro-elements and non-coding tandem repeats, Bioessays, 30(4), 338–48.
Trapani, J. A. (1995). Target cell apoptosis induced by cytotoxic T cells and natural killer cells involves synergy between the pore-forming protein, perforin, and the serine protease, granzyme B. Australia and New Zealand Journal of Medicine, 25(6), 793–799.
Tsoulfanidis, N. (1983). Measurement and Detection of Radiation. Hemisphere Publishing Corp.
Tsuda, H., Jiko, K., Tsugane, S., Yajima, M., Yamada, T., Tanemura, K., Tsunematsu, R., Ohmi, K., Sonoda, T., & Hirohashi, S. (1995). Prognostic value of p53 protein accumulation in cancer cell nuclei in adenocarcinoma of the uterine cervix. Japanese Journal of Cancer Research, 86, 1049–1053.
Turner, J. E. (2007). Atoms, Radiation, and Radiation Protection (edisi ketiga), Wiley-VCH, USA.
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). (2000). Annex B: Sources and Effects of Ionizing Radiation, vol. 1. United Nations, p. 121.
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) to the General Assembly. (2000). Sources and Effects of Ionizing Radiation, A Report of the, Volume II: Effects.
United States Department of Labor. (2021). Occupational Safety and Health Administration. Washington, DC. Diakses dari https://www.osha.gov/
Ushijima, T., Makino, H., Nakayasu, M., Aonuma, S., Takeuchi, M., Segawa, K., Sugimura, T., & Nagao, M. (1994). Presence of p53 mutation in 3Y1-B clone 1-6: A rat cell line widely used as a normal immortalized fibroblast. Japanese Journal of Cancer Research, 85, 455–458.
Utami, S. N. (2021). Contoh perpindahan panas secara radiasi yang terjadi di sekitar kita. Dari https://www.kompas.com/skola/read/2021/02/23/175717369/contoh-perpindahan-panas-secara-radiasi-yang-terjadi-di-sekitar-kita
Van Laarhoven, H. W. M., Jussink, J., Lok, J., Verhagen, I., Punt, C. J. A., ÂHeerschap, A., Kaanders, J. H. A. M., & Van Der Kogel, A. J. (2005). Modulation of hypoxia in murine liver metastases of colon carcinoma by nicotinamide and carbogen. Radiation Research, 164, 245–249.
Viani, G. A., Manta, G. B., Fonseca, F. C., De fendi L. I., Afonso, S. L., & Stefano, E. J. (2009). Whole brain radiotherapy with radiosensitizer for brain metastases. Journal of Experimental & Clinical Cancer Research, 28(1).
Vodicka, P., Musak, L., Vodickova, L., Vodenkova, S., Catalano, C., Kroupa, M., Naccarati, A., Polivkova, Z., Vymetalkova, V., Försti, A., & Hemminki, K. (2018). Genetic variation of acquired structural chromosomal aberrations. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 836(Pt A), 13–21.
Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408, 307–310.
Vogelstein, B., Sur, S., & Prives, C. (2010). P53: the most frequently altered gene in human cancers. Nature Education, 3(9), 6.
Vousden, K. H. (2000). P53: death star, Cell, 103, 691–694.
Vral, A., Thierens, H., & De Ridder, L. (1997). In vitro micronucleus centromere assay to detect radiationdamage induced by low doses in human lymphocytes. International Journal of Radiation Biology, 71, 61–68.
Vrhovac, V. G. & Zeljezic, D. (2004). Comet assay in the assessment of the human genome damage induced by y-radiation in vitro. Radiology and Oncology, 38(1), 43-47.
Vrhovac, V. G. & Kopjar, N. (2003). The alkaline Comet assay as biomarker in assessment of DNA damage in medical personnel occupationally exposed to ionizing radiation. Mutagenesis,18(3), 265–271.
Wang, J. & Yang, J. (2010). Interaction of tumor suppressor p53 with DNA and proteins. Current Pharmacetical Biotechnology, 11(1), 122–127.
Wang, Z. Z., Li, W. J., Zhang, H., Yang, J. S., Qiu, R., & Wang, X. (2006). Comparison of clonogenic assay with premature chromosome condensation assay in prediction of human cell radiosensitivity. World Journal of Gastroenterology, 12(16), 2601–2605.
Ward, J. F. (1985). Biochemistry of DNA lesions. Radiation Research, 104(Suppl. 8), S103-S111.
Weinberg, R. & Hanahan, D. (2000). The Hallmarks of Cancer, Cell, 100(1), 57–70.
Weisstein, E. W. (2007). Radiation. Eric Weisstein’s World of Physics. ÂWolfram Research, (Retrieved 2014-01-11).
Wen, J., Tao, W., Kuiatse, I., Lin, P., Feng, Y., Jones, R.J., Orlowski, R. Z., & Zu, Y. (2015). Dynamic balance of multiple myeloma clonogenic side population cell percentages controlled by environmental con- ditions. International Journal of Cancer, 136(5), 991–1002.
Wen, S.F., Mahavni, V., Quijano, E., Shinoda, J., Grace, M., Musco-ÂHobkinson, M.L., Yang, T.Y., Chen, Y., Runnenbaum, I., Horowitz, J.A., Maneval, D., Hutchins. B., & Buller, R. (2003). Assessment of p53 gene transfer and biological activities in a clinical study of aderno- virus-p53 gene therapy for recurrent ovarian cancer. Cancer Gene Therapy, 10, 224–238.
Wiliams, J. R., Zhang, Y., Zhou, H., Gridley, D. S., Koch, C.J., Slater, J. M., & Little, J. B. (2008). Overview of radiosensitivity of human tumor cells to low-dose rate irradiation. International Journal of Radiation Oncology. Biology Physics, 72(3), 909–917.
William, G.T. (1991). Programmed cell death: apoptosis and oncogenesis. Cell, 65, 1097–1098.
Wilson, J. (2002). Molecular biology of the cell: a problems approach. Garland Science.
Wojcik, A., Stephen, G., Sommer, S., Buraczewska, I., Kuszewski, T., Wieczorek, A., & Gozdz, S. (2003). Chromosomal aberration and micronuclei in lymphocytes of breast cancer patients after an accident during radiotherapy with 8 MeV electrons. Radiation Research, 160, 677–683.
World Cancer Research Fund (WCRF). (2016). Second Floor, 22 Bedford Square, London, United Kingdom, dari https://www.uicc.org/membership/world-cancer-research-fund-international-wcrf.
World Health Organization (WHO). (2010). Improving cancer control in developing countries. Geneva.
Wu, C., Guo, E., Ming, J., Sun, W., Nie, X., Sun, L., Peng, S., Luo, M., Liu, D., Zhang, L., Mei, Q., Long, G., Hu, G., & Hu, G. (2020). Radiation-in- duced DNMT3B promotes radioresistance in nasopharyngeal carcinoma through methylation of p53 and p21. Molecular Therapy – Oncolytics, 17, 306–319.
Wyllie, A.H., Kerr, J.F.R., & Currie, A.R. (1980). Cell death: significance of apoptosis. International Review of Cytology, 68, 251–306.
Yang, J., Dungrawala, H., Hua, H., Manukyan, A, Abraham, L., Lane, W., Mead, H., Wright, J., & L Schneider, B. (2011). Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle, 10(1), 144–155.
Yip, K. W. & Reed, J. C. (2008). Bcl-2 family proteins and cancer. Oncogene, 27, 6398–6406.
Zamaraev, A.V., Zhivotovsky, B., & Kopeina, G. S. (2020). Viral infections: Negative regulators of apoptosis and oncogenic factors. Biochemistry (Mosc), 85(10), 1191–1201.
Zhang, W., Becciolin, A., Biggeri, A., Pacini P., & Muirhead, C. R. (2011). ÂSecond malignancies in breast cancer patients following radiotherapy: a study in Florence, Italy. Breast Cancer Research, 13(2), R38.
Zhang, W., Becciolin, A., Biggeri, A., Pacini P., & Muirhead, C. R. (2012). Region of treatment in radiotherapy and second malignancies in breast cancer patients. Journal of Cancer Therapy, 3, 768–776.
Zhao, H., Cai, Y., Santi, S., Lafrenie, R., & Lee, H. (2005). Chloroquine-Âmediated radiosensitization is due to the destabilization of the lysosomal membrane and subsequent induction of cell death by necrosis. Radiation Research, 164, 250–257.