fbpx

Analisis Keselamatan PLTN Berbasis Probabilitas Fuzzy

Screenshot 2024-01-15 145638

Categories



Published

May 15, 2023

HOW TO CITE

Julwan Hendry Purba

Badan Riset dan Inovasi Nasional

DOI: https://doi.org/10.55981/brin.784

Keywords:

Analisis keselamatan probabilistik, Analisis pohon kegagalan, Analisis kritikalitas, Analisis pohon kejadian, Probabilitas fuzzy, Intelligence probabilistic safety assessment, Pembangkit listrik tenaga nuklir, PLTN

Synopsis

Teknologi PLTN dan teknologi sistem keselamatannya senantiasa berkembang seiring dengan perkembangan ilmu pengetahuan dan teknologi. Meskipun keandalan sistem keselamatan PLTN semakin baik, menihilkan kecelakaan dan risiko tetap tidak mungkin. Oleh karena itu, yang menjadi fokus peningkatan keandalan sistem keselamatan PLTN adalah memperkecil probabilitas kecelakaan dan menurunkan konsekuensi kecelakaan hingga tingkat risiko yang dapat diterima.

Untuk dapat memperkirakan besarnya peluang terjadinya kecelakaan dan tingkat risiko dari pengoperasian PLTN maka perlu dilakukan analisis keselamatan probabilistik. Analisis keselamatan probabilistik konvensional memerlukan ketersediaan data kegagalan komponen. Tentunya PLTN yang masih dalam tahap disain atau yang belum pernah beroperasi tidak akan memiliki data kegagalan yang diperlukan. Kondisi ini menyebabkan penggunaan data generik menjadi tak terhindarkan. Hasil analisis dengan menggunakan data generik ini tentu saja tidak akan menggambarkan kondisi nyata dari sistem yang sedang dievaluasi, sehingga kurang tepat dijadikan sebagai bahan pertimbangan untuk meningkatkan keandalan sistem keselamatan.

Oleh karena itu dikembangkanlah metode analisis keselamatan PLTN berbasis probabilitas fuzzy untuk mengevaluasi kinerja sistem keselamatan PLTN ketika data kegagalan komponen tidak tersedia. Metode baru ini memanfaatkan keilmuan, pengetahuan dan pengalaman yang dimiliki oleh pakar yang terlibat dalam mendisain dan mengembangkan reaktor tersebut. Metode analisis keselamatan probabilistik berbasis probabilitas fuzzy ini memiliki tiga fitur analisis yaitu analisis pohon kegagalan berbasis probabilitas fuzzy, analisis kritikalitas berbasis probabilitas fuzzy, dan analisis pohon kejadian berbasis probabilitas fuzzy. Untuk memudahkan pengguna, metode yang dikembangkan ini juga dilengkapi dengan perangkat lunak Intelligent Probabilistic Safety Assessment (IntelPSA).

Metode analisis ini tentu saja akan memberikan kontribusi saintifik pada pengembangan teknologi keselamatan PLTN. Kontribusi saintifik yang pertama adalah FPPSA dapat menjadi komplemen untuk analisis keselamatan probabilistik konvensional ketika PLTN yang akan dievaluasi tidak memiliki data kegagalan komponen. Kontribusi saintifik yang kedua adalah konsep berpikir yang ditanamkan pada metode baru ini dapat menjadi acuan bagi para peneliti dalam mengembangkan metode analisis baru dengan penggunaan data kualitatif melalui justifikasi pakar berdasarkan keilmuan, pengetahuan dan pengalaman yang dimiliki ketika data kuantitatif tidak tersedia. Untuk aplikasi praktis, para pembuat kebijakan terkait dengan pembangunan dan pengoperasian PLTN pertama di Indonesia dapat mempertimbangkan untuk menggunakan perangkat lunak IntelPSA sebagai alat bantu untuk mengevaluasi keandalan sistem keselamatan PLTN yang dipilih sehingga pakar yang memahami teknologi dan sistem kerja dari reaktor nuklir yang akan dibangun dapat melakukan justifikasi secara kualitatif.

Author Biography

Julwan Hendry Purba, Badan Riset dan Inovasi Nasional

Menamatkan Sekolah Dasar Negeri 124399 Pematang ­Siantar­ tahun 1983, Sekolah Menengah Pertama Negeri 3 Medan tahun 1986, dan Sekolah Menengah Atas Negeri 5 Medan tahun 1989. Memperoleh gelar sarjana teknik nuklir dari Universitas Gadjah Mada tahun 1995, memperoleh gelar master of applied information technology dari Monash University, Melbourne, Australia tahun 2003, dan gelar doktor bidang aplikasi teknik informatika pada analisis keselamatan reaktor dari University of Technology Sydney, Sydney, Australia tahun 2013.
Mengikuti beberapa pelatihan yang terkait dengan bidang kompetensinya, antara lain Interregional Training Course on Regulatory Aspects and Safety Documentation of Research Reactors di ANL, Amerika Serikat dan AECL, Kanada (tahun 1998); International Training Course on Nuclear Safety di JAEA, Jepang (tahun 2006); National Training Course on ­Probabilistic Safety Assessment di Pusdiklat-BATAN (tahun 2007); dan ­Instructor Training Course on Reactor Engineering I, II, and III di JAEA, Jepang tahun 2014.
Jabatan fungsional peneliti diawali sebagai Peneliti Muda Gol. III/d tahun 2014, Peneliti Madya Gol. IV/a tahun 2016, Peneliti Ahli Madya Gol. IV/b tahun 2018, Peneliti Ahli Madya Gol. IV/c tahun 2019 dan memperoleh jabatan Peneliti Ahli Utama Gol. IV/d bidang Teknologi Keselamatan Reaktor tahun 2021.
Menghasilkan 58 karya tulis ilmiah (KTI), baik yang ditulis sendiri maupun bersama penulis lain dalam bentuk buku, bagian buku, jurnal, dan prosiding, baik pada tingkat nasional maupun internasional. Sebanyak 35 KTI ditulis dalam bahasa Inggris.
Ikut serta dalam pembinaan kader ilmiah, yaitu sebagai pengajar di pendidikan dan pelatihan yang diselenggarakan oleh BATAN dan Bapeten; pengajar, pembimbing dan penguji skripsi (S-1) di Universitas Pembangunan Nasional (UPN) Veteran Jakarta dan Universitas Tarumanagara Jakarta; serta pembimbing dan penguji tesis (S-2) di Chulalongkorn University, Thailand dan di Universitas Indonesia.
Aktif dalam kegiatan ilmiah, antara lain sebagai ketua editor di Jurnal Atom Indonesia dan Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega. Menjadi mitra bestari di Jurnal Internasional Annals of Nuclear Energy, Reliability Engineering and System Safety, dan Quality and Reliability Engineering International. Menjadi editor/mitra bestari di International Conference on Nuclear Energy Technologies and Sciences.
Aktif dalam organisasi profesi ilmiah, yaitu sebagai Asesor Akreditasi Jurnal Nasional (ARJUNA) (2018–2023), pengurus Himpunan Peneliti Indonesia (Himpenindo) (2019–2021), anggota Himpunan Editor Berkala Ilmiah Indonesia (HEBII) (2019–2023), anggota Council of Asian Science Editors (CASE) (2020–2023), pengurus pusat Bidang Kejuruan Teknik Nuklir Persatuan Insinyur Indonesia (BKTN – PII) (2021–2024), dan pengurus pusat Perhimpunan Periset Indonesia (PPI) (2022–2024).
Memperoleh tanda penghargaan Satyalancana Karya Satya X Tahun dari Presiden Republik Indonesia (tahun 2007); Atom Indonesia Best Paper Awards dari BATAN (tahun 2014); Penghargaan Publikasi Ilmiah Internasional dari Lembaga Pengelola Dana Pendidikan (2016); Satyalancana Karya Satya XX Tahun dari Presiden Republik Indonesia (tahun 2017); Outstanding Reviewer dari jurnal Annals of Nuclear Energy (tahun 2017), Reliability Engineering and System Safety (tahun 2018), dan Fuzzy Sets and Systems (tahun 2018); serta Penghargaan ­Publikasi Ilmiah Internasional dari Kementerian Riset Teknologi dan Pendidikan Tinggi (tahun 2019).

References

Abdelgawad, M., Fayek, A. R., & Martinez, F. (2010). Quantitative assessment of horizontal directional drilling project risk using fuzzy fault tree analysis. Dalam J. Ruwanpura, Y, Mohamed, & S. Lee (Ed.), The construction research ­congress­ 2010: Innovation for reshaping construction practice. https://doi.org/10.1061/41109(373)128

Aven, T. (2011). A risk concept applicable for both probabilistic and non-probabilistic perspectives. Safety Science, 49(8–9), 1080–1086. https://doi.org/10.1016/j.ssci.2011.04.017

Bernard, M., Calle, P., Chen, F., Flower, A., Gimenez, M., ­Ingersoll, D., Madni, I., Muzikova, E., Ohashi, H., Plummer, D., Purba, J.H., Sato, H., Shiba, S., Sinegribov, S., Song, D., Spitzer, C., Tanase, A., Villalibre, Ares P., … Zhong, F. (2020). Applicability of design safety requirements to small modular reactor technologies intended for near term deployment. International Atomic Energy Agency (IAEA).

Cooke, R. M., ElSaadany, S., & Huang, X. (2008). On the performance of social network and likelihood-based expert weighting schemes. Reliability Engineering and System Safety, 93(5), 745–756. https://doi.org/10.1016/j.ress.2007.03.017

Do Van, P., Barros, A., & Bérenguer, C. (2010). From differential to difference importance measures for Markov reliability models. European Journal of Operational Research, 204, 513–521. https://doi.org/10.1016/j.ejor.2009.11.025

Dubois, D., & Prade, H. (2012). Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets and Systems, 192, 3–24. https://doi.org/10.1016/j.fss.2010.11.007

Dutuit, Y., & Rauzy, A. (2015). On the extension of importance measures to complex components. Reliability Engineering and System Safety, 142, 161–168. https://doi.org/10.1016/j.ress.2015.04.016

Ericson, C. A. (2005). Fault tree analysis. Dalam Ericson (Ed.), Hazard analysis technique for system safety (183–221). John Wiley & Sons.

Faghihi, F., Ramezani, E., Yousefpour, F., & Mirvakili, S. M. (2008). Level-1 probability safety assessment of the Iranian heavy water reactor using SAPHIRE software. Reliability Engineering and System Safety, 93(10), 1377–1409. https://doi.org/10.1016/j.ress.2007.10.002

Flage, R., Baraldi, P., Zio, E., & Aven, T. (2013). Probability and possibility-based representations of uncertainty in fault tree analysis. Risk Analysis, 33(1), 121–133. https://doi.org/10.1111/j.1539-6924.2012.01873.x

Goldberg, S. M., & Rosner, R. (2011). Nuclear reactors: Generation to generation. American Academy of Arts and Sciences.

Hammitt, J. K., & Zhang, Y. (2013). Combining experts’ judgments: Comparison of algorithmic methods using synthetic data. Risk Analysis, 33(1), 109–120. https://doi.org/10.1111/j.1539-6924.2012.01833.x

Hermansyah, H., Kumaraningrum, A. R., Purba, J. H., Edison, & Yohda, M. (2020). Safety analysis technique for system with limited data: Case study of the multipurpose research reactor in Indonesia. Energies, 13(8), 1975. https://doi.org/10.3390/en13081975

International Atomic Energy Agency. (1997). Generic component reliability data for research reactor PSA, IAEA-TECDOC-930. https://www-pub.iaea.org/MTCD/Publications/PDF/te_0930_scr.pdf

International Atomic Energy Agency. (2019). Deterministic safety analysis for nuclear power plants Specific Safety Guide No. SSG-2 (Rev. 1). https://www-pub.iaea.org/MTCD/publications/PDF/PUB1851_web.pdf

International Atomic Energy Agency. (2021). Nuclear power reactors in the world (IAEA-RDS-2/41 ed.). https://www-pub.iaea.org/MTCD/Publications/PDF/RDS-2-41_web.pdf

International Atomic Energy Agency. (2022). IAEA nuclear safety and security glossary Terminology Used in Nuclear Safety, Nuclear Security, Radiation Protection and Emergency Preparedness and Response. https://www-pub.iaea.org/MTCD/Publications/PDF/IAEA-NSS-GLOweb.pdf

Juarsa, M., Purba, J. H., Kusuma, H. M., Setiadipura, T., & Widodo, S. (2014). Preliminary study on mass flow rate in passive cooling experimental simulation during transient ­using NC-Queen apparatus. Atom Indonesia, 40(3), 141–147. https://doi.org/10.17146/aij.2014.333

Juarsa, M., Witoko, J. P., Giarno, G., Haryanto, D., & Purba, J. H. (2018). An experimental analysis on nusselt number of natural circulation flow in transient condition based on the height differences between heater and cooler. Atom Indonesia, 44(3), 123. https://doi.org/10.17146/aij.2018.876

Kumaraningrum, A. R., Hermansyah, H., & Purba, J. H. (2018). Experts’ selection in the application of fuzzy fault tree ­analysis to evaluate an RSG – GAS primary cooling system. Dalam Y. D. Jatmiko, R. Azrianingsih, & M. A. ­Pamungkas (Ed.), The 8th Annual Basic Science International ­Conference (BaSIC 2018). AIP Publishing.

Lederman, L., Vallerga, H., & Bojadjiev, A. (1990). IAEA activities on extending PSAPACK as a tool for use in NPP safety management. Reliability Engineering and System Safety, 30(1–3), 447–454. https://doi.org/10.1016/0951-8320(90)90110-9

Mentes, A., & Helvacioglu, I. H. (2011). An application of fuzzy fault tree analysis for spread mooring systems. Ocean Engineering, 38(2­–3), 285–294. https://doi.org/10.1016/j.oceaneng.2010.11.003

Nuclear Energy Agency. (2005). CSNI technical opinion paper no. 7: Living PSA and its use in the nuclear safety decision-making process. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/nea4411-psa-risk-monitors.pdf

Nitoi, M., Turcu, I., Bruynooghe, C., & Pavelescu, M. (2011). Prioritization of components important for safety and sensitive to ageing. Application for TRIGA reactor. Progress in Nuclear Energy, 53, 336–343. https://doi.org/10.1016/j.pnucene.2011.01.002

Nugroho, A., & Clarissa, A. (2020). Indeks pembangunan manusia 2019 (S. Soelistyowati, A. Said, W. Winardi, & Y. ­Karyono, Ed.). Badan Pusat Statistik.

Olatubosun, S. A., & Smidts, C. (2022). Reliability analysis of passive systems: An overview, status and research expectations. Progress in Nuclear Energy, 143, 104057. https://doi.org/10.1016/j.pnucene.2021.104057

Onisawa, T. (1988). An approach to human reliability in man-machine systems using error possibility. Fuzzy Sets and Systems, 27(2), 87–103. https://doi.org/10.1016/0165-0114(88)90140-6

Papazoglou, I. A., Bari, R. A., Buslik, A. J., Hall, R. E., Ilberg, D., Samanta, P. K., Teichmann, T., Youngblood, R. W., El-Bassioni, A., Fragola, J., & Vesely, W. (1984) Probabilistic safety analysis: Procedures guide. NUREG/CR-2815. Department of Nuclear Energy, Brookhaven National ­Laboratory. https://www.nrc.gov/docs/ML0635/ML063550253.pdf

Peraturan Pemerintah Republik Indonesia Nomor 79 Tahun 2014 tentang Kebijakan Energi Nasional. (2014). https://jdih.esdm.go.id/peraturan/PP%20No.%2079%20Thn%202014.pdf

PT Perusahaan Listrik Negara (Persero). (2021). Rencana usa­ha penyediaan tenaga listrik PT PLN (Persero) 2021-2030 PT PLN (Persero). https://web.pln.co.id/statics/uploads/2021/10/ruptl-2021-2030.pdf

Purba, J. H. (2013). Framework, approach and system of intelligent fault tree analysis for nuclear safety assessment [Disertasi PhD, University of Technology Sydney], Sydney. OPUS. http://hdl.handle.net/10453/23549

Purba, J. H. (2014a). Fuzzy probability on reliability study of nuclear power plant probabilistic safety assessment: A review. Progress in Nuclear Energy, 76, 73–80. https://doi.org/10.1016/j.pnucene.2014.05.010

Purba, J. H. (2014b). A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment. Annals of Nuclear Energy, 70, 21–29. https://doi.org/10.1016/j.anucene.2014.02.022

Purba, J. H. (2014c). Importance measure pada analisis pohon kegagalan fuzzy dengan menggunakan area defuzzification technique. Dalam Prosiding Seminar Nasional Teknologi Energi Nuklir. BATAN.

Purba, J. H. (2015a). A fuzzy probability algorithm for evaluating the AP1000 long term cooling system to mitigate large break LOCA. Atom Indonesia, 41(3), 113–121. http://dx.doi.org/10.17146/aij.2015.417

Purba, J. H. (2015b). Preliminary studies on developing PSA framework for HTGRs: Relevant events to be considered. Dalam Prosiding Seminar Nasional Teknologi Energi Nuklir. BATAN.

Purba, J. H. (2018). Master logic diagram: An approach to identify initiating vvents of HTGRs. Journal of Physics: Conference Series, 962, 012036. https://doi.org/10.1088/1742-6596/962/1/012036

Purba, J. H., & Deswandri, D. (2018). The implementation of importance measure approaches for criticality analysis in fault tree analysis: A review. Jurnal Pengembang­an Energi Nuklir, 20(1), 1–7. https://doi.org/10.17146/jpen.2018.20.1.4257

Purba, J. H., Lu, J., Ruan, D., & Zhang, G. (2010a). A hybrid approach for fault tree analysis combining probabilistic ­method with fuzzy numbers. Dalam L. Rutkowski, R.­ ­Scherer, R. Tadeusiewicz, L. A. Zadeh, & J. M. Zurada (Ed.), Artificial intelligence and soft computing, 1, 194–201). Springer.

Purba, J. H., Lu, J., Ruan, D., & Zhang, G. (2010b). ­Prob­abilistic safety assessment in nuclear power plants by fuzzy numbers. Dalam D. Ruan, T. Li, Y. Xu, G. Chen, & E. E. Kerre (Ed.), Computational intelligence: Foundations and applications, Proceedings of the 9th International FLINS Conference. World Scientific Publishing.

Purba, J. H., Lu, J., Ruan, D., & Zhang, G. (2011). Failure possibilities for nuclear safety assessment by fault tree analysis. International Journal of Nuclear Knowledge Management, 5(2), 162–177. https://doi.org/10.1504/IJNKM.2011.040940

Purba, J. H., Lu, J., Ruan, D., & Zhang, G. (2012a). A failure possibility-based reliability algorithm for nuclear safety assessment by fault tree analysis. Dalam The 1st International Workshop on Safety & Security Risk Assessment and Organizational Cultures (SSRAOC2012).

Purba, J. H., Lu, J., Ruan, D., & Zhang, G. (2012b). An area defuzzification technique to assess nuclear event reliability data from failure possibilities. International Journal of Computational Intelligence and Applications, 11(4, 1250022 (16 pp)). https://doi.org/10.1142/S1469026812500228

Purba, J. H., Lu, J., Ruan, D., & Zhang, G. (2012c, 26–29 Agustus). An area defuzzification technique and essential fuzzy rules for defuzzifying nuclear event failure possibilities into reliability data. Dalam C. Kahraman, E. E. Kerre, & F. T. Bozbura (Ed.), Uncertainty modeling in knowledge engineering and decision making: Proceedings of the 10th International FLINS Conference. World Scientific Publishing.

Purba, J. H., Lu, J., & Zhang, G. (2012). Fuzzy failure rate for nuclear power plant probabilistic safety assessment by fault tree analysis. Dalam C. Kahraman (Ed.), Computational Intelligence Systems in Industrial Engineering, 6, 131–154. Atlantis Press.

Purba, J. H., Lu, J., & Zhang, G. (2014). An intelligent system by fuzzy reliability algorithm in fault tree analysis for nuclear power plant probabilistic safety assessment. International Journal of Computational Intelligence and Applications, 13(3), 1450017. https://doi.org/10.1142/S1469026814500175

Purba, J. H., Lu, J., Zhang, G., & Pedrycz, W. (2014). A fuzzy reliability assessment of basic events of fault trees through qualitative data processing. Fuzzy Sets and Systems, 243, 50–69. https://doi.org/10.1016/j.fss.2013.06.009

Purba, J. H., & Sony Tjahyani, D. T. (2014a). Kuantifikasi ketidakpastian pada analisis pohon kegagalan dengan ­pendekatan fuzzy. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 16(1), 11–20. https://jurnal.batan.go.id/index.php/tridam/article/view/1856

Purba, J. H., & Sony Tjahyani, D. T. (2014b). Reliability study of the AP1000 passive safety system by fuzzy approach. Atom Indonesia, 40(2), 49–56. doi: https://doi.org/10.17146/aij.2014.271

Purba, J. H., & Sony Tjahyani, D. T. (2019). A comparative study on safety design requirements between HTGR and LWR. Journal of Physics: Conference Series, 1198, 022020. https://doi.org/10.1088/1742-6596/1198/2/022020

Purba, J. H., Sony Tjahyani, D. T., & Deswandri. (2019). The implementation of fault tree analysis approaches in nuclear power plant probabilistic safety assessment. Dalam G. R. Sunaryo, S. Pinem, J. H. Purba, & T. J. Suryono (Ed.), The 3rd International Conference on Nuclear Energy Technologies and Sciences (ICoNETS) 2019. AIP Publishing.

Purba, J. H., Sony Tjahyani, D. T., Ekariansyah, A. S., & ­Tjahjono, H. (2015). Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty. Annals of Nuclear Energy, 85, 1189–1199. http://dx.doi.org/10.1016/j.anucene.2015.08.002

Purba, J. H., Sony Tjahyani, D. T., Ekariansyah, A. S., & ­Tjahjono, H. (2018). Corrigendum to “Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty” [Ann. Nucl. Energy 85 (2015) 1189–1199]. Annals of Nuclear Energy, 111, 716–717. https://doi.org/10.1016/j.anucene.2017.05.043

Purba, J. H., Sony Tjahyani, D. T., Susila, I. P., Widodo, S., & Ekariansyah, A. S. (2022). Fuzzy probability and a-cut based-fault tree analysis approach to evaluate the reliability and safety of complex engineering systems. Quality and Reliability Engineering International, 38(5), 2356–2371. https://doi.org/10.1002/qre.3080

Purba, J. H., Sony Tjahyani, D. T., Widodo, S., & Ekariansyah, A. S. (2020). Fuzzy probability based event tree analysis for calculating core damage frequency in nuclear power plant probabilistic safety assessment. Progress in Nuclear Energy, 125, 103376. https://doi.org/10.1016/j.pnucene.2020.103376

Purba, J. H., Sony Tjahyani, D. T., Widodo, S., & Tjahjono, H. (2017). a-Cut method based importance measure for criticality analysis in fuzzy probability – based fault tree analysis. Annals of Nuclear Energy, 110, 234–243. https://doi.org/10.1016/j.anucene.2017.06.023

Purba, J. H., Tjahyani, D. T. S., Susila, I. P., & Waskita, A. A. (2021). Pengembangan perangkat lunak analisis keselamatan probabilistik PLTN berbasis kecerdasan buatan. Pusat Riset dan Teknologi Keselamatan Reaktor Nuklir.

Purba, J. H., Waskita, A. A., & Sony Tjahyani, D. T. (2019). The evaluation of the high temperature gas cooled reactor safety to fulfill the requirement of the next generation nuclear. Jurnal Pengembangan Energi Nuklir, 21(2), 71–78. https://doi.org/10.17146/jpen.2019.21.2.5615

Rao, K. D., Kushwaha, H. S., Verma, A. K., & Srividya, A. (2007). Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies. Reliability Engineering and System Safety, 92(7), 947–956. https://doi.org/10.1016/j.ress.2006.07.002

Rausand, M., & Hoyland, A. (2004). Component importance System reliability theory: Models, statistical methods, and applications (2nd ed.). Wiley.

Sakalli, U. S., & Baykoc, O. F. (2010). An application of investment decision with random fuzzy outcomes. Expert Systems with Applications, 37, 3405–3414. https://doi.org/10.1016/j.eswa.2009.10.007

Smith, C., Knudsen, J., Kvarfordt, K., & Wood, T. (2008). Key attributes of the SAPHIRE risk and reliability analysis software for risk-informed probabilistic applications. Reliability Engineering and System Safety, 93(8), 1151–1164. https://doi.org/10.1016/j.ress.2007.08.005

Song, H., Zhang, H. Y., & Chan, C. W. (2009). Fuzzy fault tree analysis based on T–S model with application to INS/GPS navigation system. Soft Computing – A Fusion of Foundations, Methodologies and Applications, 13(1), 31–40. https://doi.org/10.1007/s00500-008-0290-3

Sony Tjahyani, D. T., & Purba, J. H. (2014). Analisis skenario kegagalan sistem untuk menentukan probabilitas kecelakaan parah AP1000. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 16(3), 134–148. https://jurnal.batan.go.id/index.php/tridam/article/view/1845

Sony Tjahyani, D. T., & Purba, J. H. (2016). Analysis on the adequacy level of defence in depth for the modular HTGR. Dalam Prosiding Seminar Nasional Teknologi Energi Nuklir. BATAN.

Sony Tjahyani, D. T., & Purba, J. H. (2019). Probabilistic safety analysis for assessing the failure of heat removal control of AP1000. Journal of Physics: Conference Series, 1198, 022070. https://doi.org/10.1088/1742-6596/1198/2/022070

Sony Tjahyani, D. T., Purba, J. H., & Deswandri. (2019). The assessment of the radioactive releases from the confinement structure of AP1000 by probabilistic safety analysis. Dalam G. R. Sunaryo, S. Pinem, J. H. Purba, & T. J. Suryono (Ed.), The 3rd International Conference on Nuclear Energy Technologies and Sciences (ICoNETS) 2019. AIP Publishing.

Susyadi, Sriyono, Kuntoro, I., Tjahjono, H., Purba, J. H., Sony Tjahyani, D. T. , Ekariansyah, A. S., Dibyo, S., & Amelia, A. C. (2018). Teknologi PLTN untuk Indonesia: Rekomendasi berbasis kesiapan teknologi untuk pembangunan dalam waktu dekat. Batan Press.

Wierman, T. E., Beck, S. T., Calley, M. B., Eide, S. A., Gentillon, C. D., & Kohn, W. E. (2001a). Reliability study: Babcock and Wilcox reactor protection system, 1984–1998, NUREG/CR-5500, Vol. 11. USNRC.

Wierman, T. E., Beck, S. T., Calley, M. B., Eide, S. A., ­Gentillon,­ C. D., & Kohn, W. E. (2001b). Reliability study: Combustion engineering reactor protection system, 1984–1998. NUREG/CR-5500, Vol. 10. USNRC.

You, X., & Tonon, F. (2012). Event-tree analysis with imprecise probabilities. Risk Analysis, 32(2), 330–344. https://doi.org/10.1111/j.1539-6924.2011.01721.x

Zio, E., & Podofillini, L. (2006). Accounting for components interactions in the differential importance measure. Reliability Engineering and System Safety, 91, 1163–1174. https://doi.org/10.1016/j.ress.2005.11.044

Scroll to Top
×